我编写了一个函数,它采用N维std::array
和参数包(坐标)等于输入std::array
的维数。我已经可以使用元函数估计std :: array的每个维度的大小,并且我编写了一个计算包中参数的函数。
我想1)生成一个新的constexpr std::array
,其大小等于输入std::array
的维数。 2)数组应使用输入std :: array的每个维度的大小进行初始化。
是否有人提示如何仅使用C ++ 11填充std::array
权限。
E.g。这段代码
using array3d = std::array<std::array<std::array<int, 4>, 4>, 4>;
3d_helper<array3d>(array3d(), 0,0,0);
应该生成:
constexpr std::array<int, 3> array = { 4, 4, 4 };
这是我到目前为止所做的:
//! Static estimation of std::array container size
// Declare a generic template (which is called initially)
template <size_t dim, class Array>
struct static_size;
// specialization for std::array and first dimension
// creates a struct with a static member "value = N"
template <class T, size_t N>
struct static_size<0, std::array<T, N>> : std::integral_constant<size_t, N> {};
// specialization for std::array and dimension > 0 -> recurse down in dim
template <size_t dim, class InnerArray, size_t N>
struct static_size<dim, std::array<InnerArray, N>> : static_size<dim - 1, InnerArray> {};
template <class FIRST, class... OTHER>
size_t num_args() {
return 1 + num_args<OTHER...>();
}
template <class FIRST>
size_t num_args() {
return 1;
}
template <class ARRAY, class... ARGS>
struct 3d_helper {
static glm::vec3 at_t(const ARRAY &points, ARGS... args) {
constexpr size_t nargs = num_args<ARGS...>();
/*
constexpr size_t n1 = static_size<0, ARRAY>::value - 1;
constexpr size_t n2 = static_size<1, ARRAY>::value - 1;
*/
// ...
using array_t = std::array<size_t, nargs>;
// fill it somehow
}
};
答案 0 :(得分:2)
根据我对this相关问题的解决方案,这是一种方法
// Example program
#include <iostream>
#include <string>
#include <array>
// typedefs for certain container classes
template<class T, size_t x>
using array1D = std::array<T, x>;
template<class T, size_t x, size_t y>
using array2D = std::array<std::array<T, y>, x>;
template<class T, size_t x, size_t y, size_t z>
using array3D = std::array<std::array<std::array<T, z>, y>, x>;
template <size_t dim, typename Array>
struct size_of_dim;
// specialization for std array and first dimension
template <typename T, size_t N>
struct size_of_dim<0, std::array<T,N>> : std::integral_constant<size_t, N> {};
// specialization for std array and dimension > 0 → recurse down in dim
template <size_t dim, typename InnerArray, size_t N>
struct size_of_dim<dim, std::array<InnerArray,N>> : size_of_dim<dim-1,InnerArray> {};
template <typename Array>
struct cardinality : std::integral_constant<size_t, 0> {};
template <typename T, size_t N>
struct cardinality<std::array<T,N>> : std::integral_constant<size_t, cardinality<T>::value + 1> {};
template <typename Array>
auto constexpr cardinality_v = cardinality<Array>::value;
template <typename Array, size_t... Ns >
constexpr auto dimensions_impl(std::index_sequence<Ns...>) {
std::array<size_t, cardinality_v<Array>> result = { size_of_dim<Ns,Array>::value... };
return result;
}
template <typename Array>
constexpr auto dimensions() {
return dimensions_impl<Array>(std::make_index_sequence<cardinality_v<Array>>() );
}
int main()
{
auto test = [](auto arr){
constexpr auto dims = dimensions<decltype(arr)>();
for (auto d : dims)
std::cout << d << ", ";
std::cout << std::endl;
};
test(array1D<float, 1337>());
test(array2D<float, 7357, 17>());
test(array3D<float, 3, 4, 5>());
}