张量流中的2层神经网络

时间:2017-09-04 06:54:32

标签: python machine-learning tensorflow neural-network

我是tensorflow的新手,并试图训练以下两层网络。似乎它不起作用,因为交叉熵不会随着迭代而减少。我想我搞砸了将隐藏层连接到输出层。如果你能看到问题,请帮帮我,

import tensorflow as tf
from scipy.io import loadmat
import numpy as np
import sys

x = loadmat('../mnist_data/ex4data1.mat')
X = x['X']

# one hot conversion
y_temp = x['y']
y_temp = np.reshape(y_temp, (len(y_temp),))
y = np.zeros((len(y_temp),10))
y[np.arange(len(y_temp)), y_temp-1] = 1.



input_size = 400
hidden1_size = 25
output_size = 10
num_iters = 50
reg_alpha = 0.05


x = tf.placeholder(tf.float32, [None, input_size], name='data')
W1 = tf.Variable(tf.zeros([hidden1_size, input_size], tf.float32, name='weights_1st_layer'))
b1 = tf.Variable(tf.zeros([hidden1_size], tf.float32), name='bias_layer_1')
W2 = tf.Variable(tf.zeros([output_size, hidden1_size], tf.float32, name='weights_2nd_layer'))
b2 = tf.Variable(tf.zeros([output_size], tf.float32), name='bias_layer_2')


hidden_op = tf.nn.relu(tf.add(tf.matmul(x, W1, transpose_b=True), b1))
output_op = tf.matmul(hidden_op, W2, transpose_b=True) + b2
pred = tf.nn.softmax(output_op) 

y_ = tf.placeholder(tf.float32, [None, 10], name='actual_labels')


cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    labels=y_, logits=output_op))
train_step = tf.train.GradientDescentOptimizer(reg_alpha).minimize(cross_entropy)

sess = tf.InteractiveSession()
tf.global_variables_initializer().run()

for _ in range(50):
    print ('training..', _)
    print (sess.run([train_step, cross_entropy], feed_dict={x : X, y_ : y}))

corr_pred = tf.equal(tf.argmax(pred, axis=1), tf.argmax(y_, axis=1))
acc = tf.reduce_mean(tf.cast(corr_pred, tf.float32))
print (sess.run(acc, feed_dict={x:X, y_:y}))
sess.close()

1 个答案:

答案 0 :(得分:1)

尝试将权重初始化为randoms,而不是零。

所以而不是:

W1 = tf.Variable(tf.zeros([hidden1_size, input_size], tf.float32, name='weights_1st_layer'))
W2 = tf.Variable(tf.zeros([output_size, hidden1_size], tf.float32, name='weights_2nd_layer'))

使用:

W1 = tf.Variable(tf.truncated_normal([hidden1_size, input_size], tf.float32, name='weights_1st_layer'), stddev=0.1))
W2 = tf.Variable(tf.truncated_normal([output_size, hidden1_size], tf.float32, name='weights_2nd_layer'), stddev=0.1))

检查this很好的摘要为什么将所有权重初始化为零会阻止网络进行训练。