在完成算法的培训和验证后,如何正确显示“单热编码”功能的名称?我想整齐地显示每个功能的名称及其重要性。以下是我的尝试:
显示功能重要性:
grid_search.best_estimator_.feature_importances_
array([ 7.67359589e-02, 7.20731884e-02, 4.38667330e-02,
1.69222269e-02, 1.51816327e-02, 1.66947835e-02,
1.56858183e-02, 3.43347923e-01, 5.95555727e-02,
7.65422356e-02, 1.11224727e-01, 1.02677088e-02,
1.32720377e-01, 1.06447326e-04, 4.45207929e-03,
4.62258699e-03])
获取一个热门的类别名称:
cat_one_hot_attribs = list(encoder.classes_)
print(cat_one_hot_attribs)
['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN']
获取其他名称(其他类别):
num_attribs = list(X_train)
['longitude',
'latitude',
'housing_median_age',
'total_rooms',
'total_bedrooms',
'population',
'households',
'median_income',
'rooms_per_household',
'bedrooms_per_household',
'population_per_household',
0,
1,
2,
3,
4]
现在我执行以下操作:
attributes = num_attribs + cat_one_hot_attribs
print(pd.DataFrame(sorted(zip(feature_importance, attributes), reverse=True)))
但我得到以下内容:
0 1
0 0.343348 median_income
1 0.132720 1
2 0.111225 population_per_household
3 0.076736 longitude
4 0.076542 bedrooms_per_household
5 0.072073 latitude
6 0.059556 rooms_per_household
7 0.043867 housing_median_age
8 0.016922 total_rooms
9 0.016695 population
10 0.015686 households
11 0.015182 total_bedrooms
12 0.010268 0
13 0.004623 4
14 0.004452 3
15 0.000106 2
我也试过其他方法,但都失败了。
有人可以建议一种方法来正确显示吗?谢谢。
修改
从@cᴏʟᴅsᴘᴇᴇᴅ的回答中,我尝试了以下内容:
feature_importance = grid_search.best_estimator_.feature_importances_
cat_one_hot_attribs = list(encoder.classes_)
num_attribs = list(X_train)
attributes = num_attribs + cat_one_hot_attribs
vals = sorted(zip(feature_importance, attributes), key=lambda x: x[0], reverse=True)
df = pd.DataFrame(vals)
print(df)
仍然按上述方式获得输出。
答案 0 :(得分:2)
分解。按键排序。确保只考虑feature_importance
。
设定:
import pandas as pd
import numpy as np
feature_importance = np.array([ 7.67359589e-02, 7.20731884e-02, 4.38667330e-02,
1.69222269e-02, 1.51816327e-02, 1.66947835e-02,
1.56858183e-02, 3.43347923e-01, 5.95555727e-02,
7.65422356e-02, 1.11224727e-01, 1.02677088e-02,
1.32720377e-01, 1.06447326e-04, 4.45207929e-03,
4.62258699e-03])
cat_one_hot_attribs = ['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN']
num_attribs = ['longitude',
'latitude',
'housing_median_age',
'total_rooms',
'total_bedrooms',
'population',
'households',
'median_income',
'rooms_per_household',
'bedrooms_per_household',
'population_per_household',
0,
1,
2,
3,
4]
attributes = num_attribs
按vals
获取feature_importance
的排序列表。
vals = sorted(zip(feature_importance, attributes), key=lambda x: x[0], reverse=True)
df = pd.DataFrame(vals)
然后,使用.replace
将编码替换为cat_one_hot_attribs
中的值。
df.iloc[:, -1] = df.iloc[:, -1].replace({i : k for i, k in enumerate(cat_one_hot_attribs)})
df
0 1
0 0.343348 median_income
1 0.132720 INLAND
2 0.111225 population_per_household
3 0.076736 longitude
4 0.076542 bedrooms_per_household
5 0.072073 latitude
6 0.059556 rooms_per_household
7 0.043867 housing_median_age
8 0.016922 total_rooms
9 0.016695 population
10 0.015686 households
11 0.015182 total_bedrooms
12 0.010268 <1H OCEAN
13 0.004623 NEAR OCEAN
14 0.004452 NEAR BAY
15 0.000106 ISLAND