神经网络模型预测意外结果

时间:2017-09-03 12:16:38

标签: tensorflow neural-network keras

我想创建一个能够独立玩赛车游戏的CNN。 我用30.000个样本训练了模型,我的特征(x_test)是帧,我的标签(y_test)是w和d键(单热编码) 但我的模型预测这不是预测 三个概率:

 [ 1.  0.  0.]
 [ 1.  0.  0.]
 [ 1.  0.  0.]
 [ 1.  0.  0.]
 [ 1.  0.  0.]
 [ 1.  0.  0.]

我的模型结构中存在问题,还是需要更大的数据集?

我的代码是:

  1. 训练

        classifier = create_model()
            train_data=np.load('data1/final_data.npy')
            for i in range(52):
                file_name = 'data2/training_data-{}.npy'.format(i)
                train_data_2=np.load(file_name)
                train_data=np.concatenate((train_data,train_data_2))    
            shuffle(train_data)
            x=train_data[:,0]
            y=train_data[:,1]
            train_data=[]
            x=x.tolist()
            x=np.array(x)
            y=y.tolist()
            y=np.array(y)
            classifier.fit(x,y, epochs=5, batch_size=32)
            classifier.save('/output/model.model') 
    
  2. 模型

    def create_model():
        classifier = Sequential()
        classifier.add(Conv2D(96,(3,3),input_shape=(120,160,3),activation='relu'))
        classifier.add(MaxPooling2D(pool_size=(2,2)))
        classifier.add(Conv2D(256,(3,3),activation='relu'))
        classifier.add(MaxPooling2D(pool_size=(2,2)))
        classifier.add(Conv2D(384,(3,3),activation='relu'))
        classifier.add(Conv2D(384,(3,3),activation='relu'))  
        classifier.add(Conv2D(256,(3,3),activation='relu'))
        classifier.add(MaxPooling2D(pool_size=(2,2)))
        classifier.add(Flatten())
        classifier.add(Dense(units = 2048, activation = 'relu'))
        classifier.add(Dropout(0.5))
        classifier.add(Dense(units = 2048, activation = 'relu'))
        classifier.add(Dropout(0.5))
        classifier.add(Dense(units = 3, activation = 'softmax'))
        classifier.compile(optimizer = 'rmsprop', loss = 'categorical_crossentropy', 
        metrics = ['accuracy'])  
        return classifier
    
  3. 测试

            def straight():
                ReleaseKey(A)
                ReleaseKey(D)
                PressKey(W)
            def left():
                ReleaseKey(D)
                PressKey(W)
                PressKey(A)
    
            def right():
                ReleaseKey(A)
                PressKey(W)
                PressKey(D)
    
            def main():
                model=load_model('model.model')
    
                for i in list(range(5))[::-1]:
                    print(i+1)
                    time.sleep(1)
    
                paused = False
                while(True):
    
                    if not paused:
                        screen = grab_screen(region=(0,64,640,480))
                        screen = cv2.resize(screen, (160,120))
                        screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)
                        screen = np.expand_dims(screen, axis = 0)
                        prediction = model.predict(screen)[0]
                        print(prediction)
    
                        maxval=max(prediction)
    
                        if prediction[1] == maxval:
            #                straight()
                            print('straigh',maxval)
                        elif prediction[2] == maxval:
            #                right()
                            print('right',maxval)
                        elif prediction[0] == maxval:
            #                left()
                            print('left',maxval)
            #
            #        keys = key_check()
            #
            #        if 'P' in keys:
            #            if paused:
            #                paused = False
            #                time.sleep(1)
            #            else:
            #                paused = True
            #                ReleaseKey(A)
            #                ReleaseKey(W)
            #                ReleaseKey(D)
            #                time.sleep(1)
    
            main()
    

1 个答案:

答案 0 :(得分:0)

可以通过创建更深层的神经网络来解决。