修改张量流中的softmax函数

时间:2017-09-03 05:47:25

标签: python tensorflow mnist

一周前我开始使用tensorflow,所以我不确定我可以使用哪种API。

目前我正在使用基本的mnist数字识别码。 如果我将softmax函数从浮点计算修改为定点计算,我想测试此代码的识别精度如何变化。

起初我试图修改库,但这样做太复杂了。所以我认为我必须读取张量并以数组的形式修改(计算)它并使用tf.Session()。eval()函数将其更改为张量。 我应该使用哪种功能?

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

import tensorflow as tf

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
#temp = tf.Variable(tf.zeros([784, 10]))
temp = tf.Variable(tf.matmul(x, W) + b)
#temp = tf.add(tf.matmul(x, W),b)

y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
#print(temp[500])

for i in range(100):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

0 个答案:

没有答案