我有这个数据框,其中性别应该是男性或女性。
from io import StringIO
import pandas as pd
audit_trail = StringIO('''
course_id AcademicYear_to months TotalFee Gender
260 2017 24 100 male
260 2018 12 140 male
274 2016 36 300 mail
274 2017 24 340 female
274 2018 12 200 animal
285 2017 24 300 bird
285 2018 12 200 maela
''')
df11 = pd.read_csv(audit_trail, sep=" " )
我可以使用字典来纠正拼写错误。
corrections={'mail':'male', 'mael':'male', 'maae':'male'}
df11.Gender.replace(corrections)
但是我正在寻找一种方法来保持只有男性/女性和其他"其余选项的类别。预期产出:
0 male
1 male
2 male
3 female
4 other
5 other
6 male
Name: Gender, dtype: object
答案 0 :(得分:3)
在corrections
字典中添加另外两个虚拟条目:
corrections = {'male' : 'male', # dummy entry for male
'female' : 'female', # dummy entry for female
'mail' : 'male',
'maela' : 'male',
'maae' : 'male'}
现在,使用map
和fillna
:
df11.Gender = df11.Gender.map(corrections).fillna('other')
df11
course_id AcademicYear_to months TotalFee Gender
0 260 2017 24 100 male
1 260 2018 12 140 male
2 274 2016 36 300 male
3 274 2017 24 340 female
4 274 2018 12 200 other
5 285 2017 24 300 other
6 285 2018 12 200 male
答案 1 :(得分:2)
您可以使用:
corrections={'mail':'male', 'maela':'male', 'maae':'male', 'male':'male', 'female':'female'}
df11[['Gender']] = df11[['Gender']].applymap(corrections.get).fillna('other')
print (df11)
course_id AcademicYear_to months TotalFee Gender
0 260 2017 24 100 male
1 260 2018 12 140 male
2 274 2016 36 300 male
3 274 2017 24 340 female
4 274 2018 12 200 other
5 285 2017 24 300 other
6 285 2018 12 200 male
编辑:
对于替换,只有一列更好cᴏʟᴅsᴘᴇᴇᴅ的答案。如果要替换多个列,最好是applymap
。