在Dataproc下,我设置了一个包含1个主节点和2个工作人员的PySpark集群。在存储桶中,我有文件子目录的目录。
在Datalab笔记本中我运行
import subprocess
all_parent_direcotry = subprocess.Popen("gsutil ls gs://parent-directories ",shell=True,stdout=subprocess.PIPE).stdout.read()
这给了我所有子目录没有问题。
然后我希望gsutil ls
子目录中的所有文件,所以在主节点中我得到了:
def get_sub_dir(path):
import subprocess
p = subprocess.Popen("gsutil ls gs://parent-directories/" + path, shell=True,stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return p.stdout.read(), p.stderr.read()
并运行get_sub_dir(sub-directory)
,这会使所有文件都没有问题。
然而,
sub_dir = sc.parallelize([sub-directory])
sub_dir.map(get_sub_dir).collect()
给了我:
Traceback (most recent call last):
File "/usr/bin/../lib/google-cloud-sdk/bin/bootstrapping/gsutil.py", line 99, in <module>
main()
File "/usr/bin/../lib/google-cloud-sdk/bin/bootstrapping/gsutil.py", line 30, in main
project, account = bootstrapping.GetActiveProjectAndAccount()
File "/usr/lib/google-cloud-sdk/bin/bootstrapping/bootstrapping.py", line 205, in GetActiveProjectAndAccount
project_name = properties.VALUES.core.project.Get(validate=False)
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/properties.py", line 1373, in Get
required)
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/properties.py", line 1661, in _GetProperty
value = _GetPropertyWithoutDefault(prop, properties_file)
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/properties.py", line 1699, in _GetPropertyWithoutDefault
value = callback()
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/credentials/store.py", line 222, in GetProject
return c_gce.Metadata().Project()
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/credentials/gce.py", line 203, in Metadata
_metadata_lock.lock(function=_CreateMetadata, argument=None)
File "/usr/lib/python2.7/mutex.py", line 44, in lock
function(argument)
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/credentials/gce.py", line 202, in _CreateMetadata
_metadata = _GCEMetadata()
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/credentials/gce.py", line 59, in __init__
self.connected = gce_cache.GetOnGCE()
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/credentials/gce_cache.py", line 141, in GetOnGCE
return _SINGLETON_ON_GCE_CACHE.GetOnGCE(check_age)
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/credentials/gce_cache.py", line 81, in GetOnGCE
self._WriteDisk(on_gce)
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/credentials/gce_cache.py", line 113, in _WriteDisk
with files.OpenForWritingPrivate(gce_cache_path) as gcecache_file:
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/util/files.py", line 715, in OpenForWritingPrivate
MakeDir(full_parent_dir_path, mode=0700)
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/core/util/files.py", line 115, in MakeDir
(u'Please verify that you have permissions to write to the parent '
googlecloudsdk.core.util.files.Error: Could not create directory [/home/.config/gcloud]: Permission denied.
Please verify that you have permissions to write to the parent directory.
检查后,在whoami
的工作节点上显示yarn
。
所以问题是,如何授权yarn
使用gsutil
,还是有其他方法可以从Dataproc PySpark Worker节点访问存储桶?
答案 0 :(得分:1)
CLI查看当前homedir,以获取在从元数据服务获取令牌时放置缓存凭据文件的位置。 googlecloudsdk/core/config.py
中的相关代码如下所示:
def _GetGlobalConfigDir():
"""Returns the path to the user's global config area.
Returns:
str: The path to the user's global config area.
"""
# Name of the directory that roots a cloud SDK workspace.
global_config_dir = encoding.GetEncodedValue(os.environ, CLOUDSDK_CONFIG)
if global_config_dir:
return global_config_dir
if platforms.OperatingSystem.Current() != platforms.OperatingSystem.WINDOWS:
return os.path.join(os.path.expanduser('~'), '.config',
_CLOUDSDK_GLOBAL_CONFIG_DIR_NAME)
对于在YARN容器中运行的内容,尽管以用户yarn
运行,但如果您只是运行sudo su yarn
,则会在数据加速器上看到~
解析为/var/lib/hadoop-yarn
节点,YARN实际上将yarn.nodemanager.user-home-dir
传播为容器的homedir,默认为/home/
。因此,即使您可以sudo -u yarn gsutil ...
,它的行为与YARN容器中的gsutil行为不同,当然只有root
能够在基础{{1}中创建目录}目录。
长话短说,你有两个选择:
/home/
声明之前添加HOME=/var/lib/hadoop-yarn
。示例:
gsutil
示例:
p = subprocess.Popen("HOME=/var/lib/hadoop-yarn gsutil ls gs://parent-directories/" + path, shell=True,stdout=subprocess.PIPE, stderr=subprocess.PIPE)
对于现有群集,您还可以手动将配置添加到所有工作人员的gcloud dataproc clusters create --properties yarn:yarn.nodemanager.user-home-dir=/var/lib/hadoop-yarn ...
,然后重新启动工作计算机(或只运行/etc/hadoop/conf/yarn-site.xml
),但这可能是手动运行的麻烦在所有工作节点上。