Consider the two DataFrames .
.
.
files: [
{ pattern: 'node_modules/abc/abc.min.css', included:true, watched: false }
],
and @Before
public void openBrowser() {
String url = ("https://loadfocus.com/blog/2016/06/13/how-to-select-adropdown-in-selenium-webdriver-using-java");
driver = utility.Utils.openBrowser(driver, url);
}
@Test
public void open() {
Select dropdown = new Select(driver.findElement(By.id("mySelect")));
dropdown.selectByIndex(2);
}
:
If Not ImportDialog.InitialDirectory.Contains("Direct Access\Shell\Customer Invoices") Then
ImportDialog.InitialDirectory = "....\Direct Access\Shell\Customer Invoices\"
End If
I want to overwrite the first column of d1
. It starts off as:
d2
I attempt to overwrite the values of d1 = pd.DataFrame(np.arange(2).reshape(-1, 2), columns=['A', 'B'])
d2 = pd.DataFrame(dict(A=[0], B=list('a')))
with:
d1
However when I do the same thing with d1
A B
0 0 1
, I get different results.
'A'
Then:
d1.values[:, 0] = 2
d1
A B
0 2 1
Nothing has changed, except when I do:
d2
Why is this behavior inconsistent?
答案 0 :(得分:6)
Because of the mixed ObservableCollection<Item>
s in SELECT DISTINCT (package_id)
FROM EXT
WHERE Item_param_attr_name = 'Usage category group'
AND Item_param_attr_value = 'H'
AND package_id IN
(SELECT DISTINCT (package_id)
FROM EXT
WHERE Item_param_attr_name = 'Charge code'
AND Item_param_attr_value = 'WDATRM'
AND Priority > 299
AND package_id IN
(SELECT DISTINCT (package_id)
FROM EXT
WHERE Item_param_attr_name = 'Charge code'
AND Item_param_attr_value = 'WDA4RM'
AND package_id IN
(SELECT DISTINCT (package_id)
FROM EXT
WHERE ITEM_PARAM_ATTR_NAME = 'Rate table rate'
AND ITEM_PARAM_ATTR_VALUE = '0.00000953')));
you'll get an devServer: {
historyApiFallback: true,
noInfo: true,
setup(app){
app.get('/logincallback', function(req, res) {
res.sendFile(path.join(__dirname + '/callback.html'));
});
}
},
-array (copy) when you access the whole dtype
.
d2
This happens for any non-identical datatypes, e.g. also for object
vs. .values
:
>>> d2.values
array([[0, 'a']], dtype=object)
The changes only propagate back if the dtype is exactly the same for all columns:
int32
Just to give an (approximate) way to find out if it's a view or a copy of the actual column you could use np.shares_memory
:
int64