似乎MonitoredTrainingSession在第一次调用.run(..)之前做了一些操作(记录?),这意味着当我这样做时:
train_data = reader.traindata() # returns a tf.contrib.data.Dataset
it = tf.contrib.data.Iterator.from_structure(train_data.output_types, train_data.output_shapes)
init_train = it.make_initializer(train_data)
ne = it.get_next()
ts = tf.train.MonitoredTrainingSession(checkpoint_dir=save_path)
... no calls to ts.run ...
ts.run(init_train)
这会产生错误:
FailedPreconditionError (see above for traceback): GetNext() failed because the iterator has not been initialized. Ensure that you have run the initializer operation for this iterator before getting the next element
所以它接缝好像MonitoredTrainingSession在运行我提供的操作之前正在做一些操作,这使得无法使用来自Dataset的可重新初始化的迭代器进行togeather。
我确信我错过了一些东西,并希望听到: - )
答案 0 :(得分:7)
在Tensorflow中看起来还没有直接的解决方案。是的,他们没有完全支持数据集API,这很奇怪。
原因是,从检查点加载时,受监视的会话会跳过运行init_op
。因此,Iterator初始值设定项应该是局部变量。
此问题中提供了当前的解决方案建议 - https://github.com/tensorflow/tensorflow/issues/12859
scaffold = tf.train.Scaffold(local_init_op=tf.group(tf.local_variables_initializer(),
init_train))
with tf.train.MonitoredTrainingSession(scaffold=scaffold,
checkpoint_dir=checkpoint_dir) as sess:
while not sess.should_stop():
sess.run(train_op)