作为这个问题的后续问题here(感谢MSeifert的帮助)我想出了一个问题,我必须使用索引数组new_values
来掩盖一个numpy数组new_vals_idx
在传递蒙面数组之前更新val_dict
。
对于在旧帖子中回答MSeifert的建议解决方案,我尝试应用数组屏蔽,但性能并不令人满意。
我用于以下示例的数组和序列是:
import numpy as np
val_dict = {'a': 5.0, 'b': 18.8, 'c': -55/2}
for i in range(200):
val_dict[str(i)] = i
val_dict[i] = i**2
keys = ('b', 123, '89', 'c') # dict keys to update
new_values = np.arange(1, 51, 1) / 1.0 # array with new values which has to be masked
new_vals_idx = np.array((0, 3, 5, -1)) # masking array
valarr = np.zeros((new_vals_idx.shape[0])) # preallocation for masked array
length = new_vals_idx.shape[0]
为了使我的代码片段更容易与我的旧问题进行比较,我将坚持MSeifert的答案的功能命名。这些是我试图从python / cython中获得最佳性能(其他答案由于性能太差而被遗漏):
def old_for(val_dict, keys, new_values, new_vals_idx, length):
for i in range(length):
val_dict[keys[i]] = new_values[new_vals_idx[i]]
%timeit old_for(val_dict, keys, new_values, new_vals_idx, length)
# 1000000 loops, best of 3: 1.6 µs per loop
def old_for_w_valarr(val_dict, keys, new_values, valarr, new_vals_idx, length):
valarr = new_values[new_vals_idx]
for i in range(length):
val_dict[keys[i]] = valarr[i]
%timeit old_for_w_valarr(val_dict, keys, new_values, valarr, new_vals_idx, length)
# 100000 loops, best of 3: 2.33 µs per loop
def new2_w_valarr(val_dict, keys, new_values, valarr, new_vals_idx, length):
valarr = new_values[new_vals_idx].tolist()
for key, val in zip(keys, valarr):
val_dict[key] = val
%timeit new2_w_valarr(val_dict, keys, new_values, valarr, new_vals_idx, length)
# 100000 loops, best of 3: 2.01 µs per loop
Cython功能:
%load_ext cython
%%cython
import numpy as np
cimport numpy as np
cpdef new3_cy(dict val_dict, tuple keys, double[:] new_values, int[:] new_vals_idx, Py_ssize_t length):
cdef Py_ssize_t i
cdef double val # this gives about 10 µs speed boost compared to directly assigning it to val_dict
for i in range(length):
val = new_values[new_vals_idx[i]]
val_dict[keys[i]] = val
%timeit new3_cy(val_dict, keys, new_values, new_vals_idx, length)
# 1000000 loops, best of 3: 1.38 µs per loop
cpdef new3_cy_mview(dict val_dict, tuple keys, double[:] new_values, int[:] new_vals_idx, Py_ssize_t length):
cdef Py_ssize_t i
cdef int[:] mview_idx = new_vals_idx
cdef double [:] mview_vals = new_values
for i in range(length):
val_dict[keys[i]] = mview_vals[mview_idx[i]]
%timeit new3_cy_mview(val_dict, keys, new_values, new_vals_idx, length)
# 1000000 loops, best of 3: 1.38 µs per loop
# NOT WORKING:
cpdef new2_cy_mview(dict val_dict, tuple keys, double[:] new_values, int[:] new_vals_idx, Py_ssize_t length):
cdef double [new_vals_idx] masked_vals = new_values
for key, val in zip(keys, masked_vals.tolist()):
val_dict[key] = val
cpdef new2_cy_mask(dict val_dict, tuple keys, double[:] new_values, valarr, int[:] new_vals_idx, Py_ssize_t length):
valarr = new_values[new_vals_idx]
for key, val in zip(keys, valarr.tolist()):
val_dict[key] = val
Cython函数new3_cy
和new3_cy_mview
似乎没有old_for
快得多。传递valarr
以避免函数内部的数组构造(因为它将被称为数百万次)甚至似乎减慢了它。
使用Cython中的new2_cy_mask
数组屏蔽new_vals_idx
会给出错误:'指定了memoryview的索引无效,请键入int [:]'。对于索引数组是否有类似Py_ssize_t
的类型?
尝试在new2_cy_mview
中创建一个屏蔽的内存视图,会出现错误'无法分配类型'double [:]'到'double [__pyx_v_new_vals_idx]''。甚至有像蒙面记忆的东西吗?我无法找到有关此主题的信息......
将时间结果与旧问题的结果进行比较,我猜数组屏蔽是大部分时间占用的过程。由于它很可能已经在numpy中进行了高度优化,因此可能没什么可做的。但是减速是如此巨大,必须(希望)有更好的方法来做到这一点 任何帮助表示赞赏!提前谢谢!
答案 0 :(得分:1)
您可以在当前构造中做的一件事是关闭边界检查(如果它安全!)。不会产生巨大的变化,但会有一些增量的表现。
%%cython
import numpy as np
cimport numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef new4_cy(dict val_dict, tuple keys, double[:] new_values, int[:] new_vals_idx, Py_ssize_t length):
cdef Py_ssize_t i
cdef double val # this gives about 10 µs speed boost compared to directly assigning it to val_dict
for i in range(length):
val = new_values[new_vals_idx[i]]
val_dict[keys[i]] = val
In [36]: %timeit new3_cy(val_dict, keys, new_values, new_vals_idx, length)
1.76 µs ± 209 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [37]: %timeit new4_cy(val_dict, keys, new_values, new_vals_idx, length)
1.45 µs ± 31.5 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)