我使用(简化的)以下代码在图像上覆盖补丁:
docker run -v /path/in/host:/var/log/nginx/access.log nginx
但是图例中的色块没有正确的颜色。
我遇到的问题是我为PatchColelction p设置了颜色,但是plt.legend()不接受句柄的PatchColelction,我必须用不包含颜色数据的补丁来提供它。
当我调用Cricle时,我尝试使用import matplotlib.pyplot as plt
from scipy.misc import imread
from matplotlib.collections import PatchCollection
from matplotlib.patches import Circle, Arrow
import numpy as np
def plotFeatures( patches, colours, legends, str_title, colour_scale ):
fig = plt.figure(); ax = plt.gca()
p = PatchCollection(patches, cmap=plt.get_cmap('Spectral_r'), alpha=0.9)
p.set_array(np.array(colours))
ax.add_collection(p)
p.set_clim(colour_scale)
fig.colorbar(p, ax=ax, fraction=0.015)
plt.xlabel(str_title)
plt.legend(handles=patches, labels=legends, bbox_to_anchor=(0., 1.02, 1., .2), mode='expand', ncol=3, loc="lower left")
# ax.set_xticks([]); ax.set_yticks([])
ax.set_xlim([0,100])
ax.set_ylim([0,100])
if __name__ == '__main__':
my_cmap = plt.get_cmap('Spectral_r')
# simplified data structure for example
allweights = [ {'name': 'Feature 1', 'mean': 2.1, 'x': 60, 'y':30},
{'name': 'Feature 2', 'mean': 3.0, 'x': 10, 'y':40},
{'name': 'Feature 3', 'mean': 2.5, 'x': 30, 'y':20} ]
KPD_patchList = []
KPD_colourList = []
KPD_legendList = []
for w in allweights:
KPD_patchList.append( Circle( (w['x'], w['y']), w['mean'] + 5 ) )
KPD_colourList.append( w['mean'] )
KPD_legendList.append( '{:s} ({:.2f})'.format( w['name'], w['mean']) )
plotFeatures( KPD_patchList, KPD_colourList, KPD_legendList, 'myFeatures', [0, 3] )
plt.show()
直接向补丁添加颜色数据,如下:
facecolor=my_cmap(w['mean']
然后颜色不像图中那样等级缩放:
答案 0 :(得分:1)
我认为您的第二次尝试是在正确的轨道上,除了您的数据未正确标准化为色彩图。
当您尝试从色图中获取颜色值时,需要提供范围[0-1]
中的值。为了简化操作,我经常使用matplotlib.cm.ScalarMappable
(link to documentation)自动处理此转换。
为解决您的问题,我修改了函数plotFeatures()
,如下所示:
def plotFeatures( patches, colours, legends, str_title, colour_scale ):
fig = plt.figure(); ax = plt.gca()
p = PatchCollection(patches, cmap=plt.get_cmap('Spectral_r'), alpha=0.9)
p.set_array(np.array(colours))
ax.add_collection(p)
p.set_clim(colour_scale)
fig.colorbar(p, ax=ax, fraction=0.015)
plt.xlabel(str_title)
# generate legend
# create a `ScalarMappable` object with the colormap used, and the right scaling
cm = matplotlib.cm.ScalarMappable(cmap=p.get_cmap())
cm.set_clim(colour_scale)
# create a list of Patches for the legend
l = [Circle((None,None), facecolor=cm.to_rgba(mean_value)) for mean_value in colours]
# add legend to plot
plt.legend(handles=l, labels=legends, bbox_to_anchor=(0., 1.02, 1., .2), mode='expand', ncol=3, loc="lower left")
# ax.set_xticks([]); ax.set_yticks([])
ax.set_xlim([0,100])
ax.set_ylim([0,100])