我有一个pandas数据帧,其索引为numpy数组。对于那些索引,数组的值必须设置为1。我需要在一个大的numpy阵列上做这个数百万次。有没有比下面显示的方法更有效的方法?
from numpy import float32, uint
from numpy.random import choice
from pandas import DataFrame
from timeit import timeit
xy = 2000,300000
sz = 10000000
ind = DataFrame({"i":choice(range(xy[0]),sz),"j":choice(range(xy[1]),sz)}).drop_duplicates()
dtype = uint
repeats = 10
#original (~21s)
stmt = '''\
from numpy import zeros
a = zeros(xy, dtype=dtype)
a[ind.values[:,0],ind.values[:,1]] = 1'''
print(timeit(stmt, "from __main__ import xy,sz,ind,dtype", number=repeats))
#suggested by @piRSquared (~13s)
stmt = '''\
from numpy import ones
from scipy.sparse import coo_matrix
i,j = ind.i.values,ind.j.values
a = coo_matrix((ones(i.size, dtype=dtype), (i, j)), dtype=dtype).toarray()
'''
print(timeit(stmt, "from __main__ import xy,sz,ind,dtype", number=repeats))
我编辑了上面的帖子,以显示@piRSquared建议的方法,并重新编写它以允许进行苹果对苹果的比较。无论数据类型如何(尝试过uint和float32),建议的方法都会减少40%的时间。
答案 0 :(得分:5)
OP时间
56.56 s
我只能稍微提高
i, j = ind.i.values, ind.j.values
a[i, j] = 1
新时间
52.19 s
但是,通过使用scipy.sparse.coo_matrix
实例化稀疏矩阵然后将其转换为numpy.array
,您可以大大提高速度。
import timeit
stmt = '''\
import numpy, pandas
from scipy.sparse import coo_matrix
xy = 2000,300000
sz = 10000000
ind = pandas.DataFrame({"i":numpy.random.choice(range(xy[0]),sz),"j":numpy.random.choice(range(xy[1]),sz)}).drop_duplicates()
################################################
i, j = ind.i.values, ind.j.values
dtype = numpy.uint8
a = coo_matrix((numpy.ones(i.size, dtype=dtype), (i, j)), dtype=dtype).toarray()'''
timeit.timeit(stmt, number=10)
33.06471237000369