我有DataFrame:
time_diff avg_trips
0 0.450000 1.0
1 0.483333 1.0
2 0.500000 1.0
3 0.516667 1.0
4 0.533333 2.0
我希望获得列time_diff
的第1四分位数,第3四分位数和中位数。要获得中位数,我使用np.median(df["time_diff"].values)
。
如何计算四分位数?
答案 0 :(得分:19)
您可以使用np.percentile
来计算四分位数(包括中位数):
>>> np.percentile(df.time_diff, 25) # Q1
0.48333300000000001
>>> np.percentile(df.time_diff, 50) # median
0.5
>>> np.percentile(df.time_diff, 75) # Q3
0.51666699999999999
或者一下子:
>>> np.percentile(df.time_diff, [25, 50, 75])
array([ 0.483333, 0.5 , 0.516667])
答案 1 :(得分:17)
使用ifelse(d>40, "Red", "Black")
:
ifelse
答案 2 :(得分:9)
巧合的是,此信息是使用describe
方法捕获的:
df.time_diff.describe()
count 5.000000
mean 0.496667
std 0.032059
min 0.450000
25% 0.483333
50% 0.500000
75% 0.516667
max 0.533333
Name: time_diff, dtype: float64
答案 3 :(得分:5)
使用pandas
。
df.time_diff.quantile([0.25,0.5,0.75])
Out[793]:
0.25 0.483333
0.50 0.500000
0.75 0.516667
Name: time_diff, dtype: float64
的回答
答案 4 :(得分:3)
在赛勒斯所说的话的基础上或更正一点。……
[np.percentile][1]
非常多计算Q1,中位数和Q3的值。考虑下面的排序列表:
s1=[18,45,66,70,76,83,88,90,90,95,95,98]
运行np.percentile(s1, [25, 50, 75])
返回列表中的实际值:
[69. 85.5 91.25]
但是,四分位数是Q1 = 68.0,中位数= 85.5,Q3 = 92.5,这是正确要说的话
我们在这里缺少的是np.percentile
和相关函数的插值参数。默认情况下,此参数的值为 linear 。此可选参数指定当所需分位数位于两个数据点i
下:i。
更高:j。
最接近:i或j,以最接近的那个为准。
中点:(i + j)/ 2。
因此运行np.percentile(s1, [25, 50, 75], interpolation='midpoint')
将返回列表的实际结果:
[68. 85.5 92.5]
答案 5 :(得分:2)
np.percentile
不计算Q1,中位数和Q3的值。考虑下面的排序列表:
samples = [1, 1, 8, 12, 13, 13, 14, 16, 19, 22, 27, 28, 31]
运行np.percentile(samples, [25, 50, 75])
返回列表中的实际值:
Out[1]: array([12., 14., 22.])
但是,四分位数为Q1=10.0, Median=14, Q3=24.5
(您也可以使用此link在线查找四分位数和中位数)。
可以使用以下代码来计算已排序列表的四分位数和中位数(因为对这种方法进行排序需要进行O(nlogn)
计算,其中n
是项数)。
此外,可以使用Median of medians选择算法(order statistics)在O(n)
计算中找到四分位数和中位数。
samples = sorted([28, 12, 8, 27, 16, 31, 14, 13, 19, 1, 1, 22, 13])
def find_median(sorted_list):
indices = []
list_size = len(sorted_list)
median = 0
if list_size % 2 == 0:
indices.append(int(list_size / 2) - 1) # -1 because index starts from 0
indices.append(int(list_size / 2))
median = (sorted_list[indices[0]] + sorted_list[indices[1]]) / 2
pass
else:
indices.append(int(list_size / 2))
median = sorted_list[indices[0]]
pass
return median, indices
pass
median, median_indices = find_median(samples)
Q1, Q1_indices = find_median(samples[:median_indices[0]])
Q2, Q2_indices = find_median(samples[median_indices[-1] + 1:])
quartiles = [Q1, median, Q2]
print("(Q1, median, Q3): {}".format(quartiles))
答案 6 :(得分:2)
答案 7 :(得分:2)
如果要使用原始python而不是numpy或panda,则可以使用python stats模块查找列表上半部分和下半部分的中位数:
>>> import statistics as stat
>>> def quartile(data):
data.sort()
half_list = int(len(data)//2)
upper_quartile = stat.median(data[-half_list]
lower_quartile = stat.median(data[:half_list])
print("Lower Quartile: "+str(lower_quartile))
print("Upper Quartile: "+str(upper_quartile))
print("Interquartile Range: "+str(upper_quartile-lower_quartile)
>>> quartile(df.time_diff)
第1行:在“ stat”别名下导入统计信息模块
第2行:定义四分位数功能
第3行:按升序对数据进行排序
第4行:获取列表长度的一半
第5行:获取列表下半部分的中位数
第6行:获取列表上半部分的中位数
第7行:打印下四分位数
第8行:打印上四分位数
第9行:打印四分位间距
第10行:为DataFrame的time_diff列运行四分位数功能
答案 8 :(得分:0)
在学习面向对象程序设计以及学习统计信息的过程中,我做到了这一点,也许您会发现它很有用:
samplesCourse = [9, 10, 10, 11, 13, 15, 16, 19, 19, 21, 23, 28, 30, 33, 34, 36, 44, 45, 47, 60]
class sampleSet:
def __init__(self, sampleList):
self.sampleList = sampleList
self.interList = list(sampleList) # interList is sampleList alias; alias used to maintain integrity of original sampleList
def find_median(self):
self.median = 0
if len(self.sampleList) % 2 == 0:
# find median for even-numbered sample list length
self.medL = self.interList[int(len(self.interList)/2)-1]
self.medU = self.interList[int(len(self.interList)/2)]
self.median = (self.medL + self.medU)/2
else:
# find median for odd-numbered sample list length
self.median = self.interList[int((len(self.interList)-1)/2)]
return self.median
def find_1stQuartile(self, median):
self.lower50List = []
self.Q1 = 0
# break out lower 50 percentile from sampleList
if len(self.interList) % 2 == 0:
self.lower50List = self.interList[:int(len(self.interList)/2)]
else:
# drop median to make list ready to divide into 50 percentiles
self.interList.pop(interList.index(self.median))
self.lower50List = self.interList[:int(len(self.interList)/2)]
# find 1st quartile (median of lower 50 percentiles)
if len(self.lower50List) % 2 == 0:
self.Q1L = self.lower50List[int(len(self.lower50List)/2)-1]
self.Q1U = self.lower50List[int(len(self.lower50List)/2)]
self.Q1 = (self.Q1L + self.Q1U)/2
else:
self.Q1 = self.lower50List[int((len(self.lower50List)-1)/2)]
return self.Q1
def find_3rdQuartile(self, median):
self.upper50List = []
self.Q3 = 0
# break out upper 50 percentile from sampleList
if len(self.sampleList) % 2 == 0:
self.upper50List = self.interList[int(len(self.interList)/2):]
else:
self.interList.pop(interList.index(self.median))
self.upper50List = self.interList[int(len(self.interList)/2):]
# find 3rd quartile (median of upper 50 percentiles)
if len(self.upper50List) % 2 == 0:
self.Q3L = self.upper50List[int(len(self.upper50List)/2)-1]
self.Q3U = self.upper50List[int(len(self.upper50List)/2)]
self.Q3 = (self.Q3L + self.Q3U)/2
else:
self.Q3 = self.upper50List[int((len(self.upper50List)-1)/2)]
return self.Q3
def find_InterQuartileRange(self, Q1, Q3):
self.IQR = self.Q3 - self.Q1
return self.IQR
def find_UpperFence(self, Q3, IQR):
self.fence = self.Q3 + 1.5 * self.IQR
return self.fence
samples = sampleSet(samplesCourse)
median = samples.find_median()
firstQ = samples.find_1stQuartile(median)
thirdQ = samples.find_3rdQuartile(median)
iqr = samples.find_InterQuartileRange(firstQ, thirdQ)
fence = samples.find_UpperFence(thirdQ, iqr)
print("Median is: ", median)
print("1st quartile is: ", firstQ)
print("3rd quartile is: ", thirdQ)
print("IQR is: ", iqr)
print("Upper fence is: ", fence)
答案 9 :(得分:0)
当试图找到一个能找到四分位数的数据包时,我也遇到了类似的问题。这并不是说其他人是错误的,而是说这就是我个人定义四分位数的方式。这与Shikar使用中点的结果相似,但也适用于长度为奇数的列表。如果四分位数位置在长度之间,它将使用相邻值的平均值。 (即排名始终被视为确切排名或排名的0.5)
import math
def find_quartile_postions(size):
if size == 1:
# All quartiles are the first (only) element
return 0, 0, 0
elif size == 2:
# Lower quartile is first element, Upper quartile is second element, Median is average
# Set to 0.5, 0.5, 0.5 if you prefer all quartiles to be the mean value
return 0, 0.5, 1
else:
# Lower quartile is element at 1/4th position, median at 1/2th, upper at 3/4
# Quartiles can be between positions if size + 1 is not divisible by 4
return (size + 1) / 4 - 1, (size + 1) / 2 - 1, 3 * (size + 1) / 4 - 1
def find_quartiles(num_array):
size = len(num_array)
if size == 0:
quartiles = [0,0,0]
else:
sorted_array = sorted(num_array)
lower_pos, median_pos, upper_pos = find_quartile_postions(size)
# Floor so can work in arrays
floored_lower_pos = math.floor(lower_pos)
floored_median_pos = math.floor(median_pos)
floored_upper_pos = math.floor(upper_pos)
# If position is an integer, the quartile is the elem at position
# else the quartile is the mean of the elem & the elem one position above
lower_quartile = (sorted_array[floored_lower_pos]
if (lower_pos % 1 == 0)
else (sorted_array[floored_lower_pos] + sorted_array[floored_lower_pos + 1]) / 2
)
median = (sorted_array[floored_median_pos]
if (median_pos % 1 == 0)
else (sorted_array[floored_median_pos] + sorted_array[floored_median_pos + 1]) / 2
)
upper_quartile = (sorted_array[floored_upper_pos]
if (upper_pos % 1 == 0)
else (sorted_array[floored_upper_pos] + sorted_array[floored_upper_pos + 1]) / 2
)
quartiles = [lower_quartile, median, upper_quartile]
return quartiles
答案 10 :(得分:0)
试试那个:
dfo = sorted(df.time_diff)
n=len(dfo)
Q1=int((n+3)/4)
Q3=int((3*n+1)/4)
print("Q1 position: ", Q1, "Q1 position: " ,Q3)
print("Q1 value: ", dfo[Q1], "Q1 value: ", dfo[Q3])
答案 11 :(得分:0)
如果你对使用 JS 感兴趣,我已经开发了一个解决方案:
var
withThis = (obj, cb) => cb(obj),
sort = array => array.sort((a, b) => a - b),
fractile = (array, parts, nth) => withThis(
(nth * (array.length + 1) / parts),
decimal => withThis(Math.floor(decimal),
even => withThis(sort(array),
sorted => sorted[even - 1] + (
(decimal - even) * (
sorted[even] - sorted[even - 1]
)
)
)
)
),
data = [
78, 72, 74, 79, 74, 71, 75, 74, 72, 68,
72, 73, 72, 74, 75, 74, 73, 74, 65, 72,
66, 75, 80, 69, 82, 73, 74, 72, 79, 71,
70, 75, 71, 70, 70, 70, 75, 76, 77, 67
]
fractile(data, 4, 1) // 1st Quartile is 71
fractile(data, 10, 3) // 3rd Decile is 71.3
fractile(data, 100, 82) // 82nd Percentile is 75.62
您只需将代码复制粘贴到浏览器上即可获得准确结果。 有关“使用 JS 进行统计”的更多信息,请参见 https://gist.github.com/rikyperdana/a7349c790cf5b034a1b77db64415e73c/edit