我有一些进程可以在while循环中运行。我基本上有一些收集数据的进程,在它们停止之前,我希望它们将数据保存到csv或json文件中。我现在所拥有的是使用super函数覆盖multiprocessing.Process类中的join方法。
class Processor(multiprocessing.Process):
def __init__(self, arguments):
multiprocessing.Process.__init__(self)
def run(self):
self.main_function()
def main_function(self):
While True:
#do things to incoming data
def function_on_join(self):
#do one last thing before the process ends
def join(self, timeout=None):
self.function_on_join()
super(Processor, self).join(timeout=timeout)
有更好的方式/正确方式/更多pythonic方式来做到这一点?
答案 0 :(得分:1)
我建议您查看concurrent.futures
模块。
如果您可以将您的工作描述为一组工作人员要完成的任务列表。
当您有一系列jobs
(例如文件名列表)并希望它们并行处理时 - 您可以按以下方式执行此操作:
from concurrent.futures import ProcessPoolExecutor
import requests
def get_url(url):
resp = requests.get(url)
print(f'{url} - {resp.status_code}')
return url
jobs = ['http://google.com', 'http://python.org', 'http://facebook.com']
# create process pool of 3 workers
with ProcessPoolExecutor(max_workers=1) as pool:
# run in parallel each job and gather the returned values
return_values = list(pool.map(get_url, jobs))
print(return_values)
输出:
http://google.com - 200
http://python.org - 200
http://facebook.com - 200
['http://google.com', 'http://python.org', 'http://facebook.com']
当您只想运行多个不消耗第一种情况的作业的子进程时,您可能希望使用multiprocessing.Process
。
您可以以程序方式和OOP方式与threading.Thread
类似地使用它。
程序性时尚的例子(恕我直言更多pythonic):
import os
from multiprocessing import Process
def func():
print(f'hello from: {os.getpid()}')
processes = [Process(target=func) for _ in range(4)] # creates 4 processes
for process in processes:
process.daemon = True # close the subprocess if the main program closes
process.start() # start the process
输出:
hello from: 31821
hello from: 31822
hello from: 31823
hello from: 31824
如果您想使用Process.join()
(this SO answer上的process.join()
& process.daemon
上的更多信息),请执行以下操作:
import os
import time
from multiprocessing import Process
def func():
time.sleep(3)
print(f'hello from: {os.getpid()}')
processes = [Process(target=func) for _ in range(4)] # creates 4 processes
for process in processes:
process.start() # start the process
for process in processes:
process.join() # wait for the process to finish
print('all processes are done!')
此输出:
hello from: 31980
hello from: 31983
hello from: 31981
hello from: 31982
all processes are done!