我有一个相当复杂的Apache PySpark管道,它对(非常大的)一组文本文件执行几次转换。我的管道的预期输出是管道的不同阶段。哪种方法最好(即效率更高,但更多闪闪发光的,更符合Spark编程模型和样式)?
现在,我的代码如下所示:
# initialize the pipeline and perform the first set of transformations.
ctx = pyspark.SparkContext('local', 'MyPipeline')
rdd = ctx.textFile(...).map(...).map(...)
# first checkpoint: the `first_serialization` function serializes
# the data into properly formatted string.
rdd..map(first_serialization).saveAsTextFile("ckpt1")
# here, I have to read again from the previously saved checkpoint
# using a `first_deserialization` function that deserializes what has
# been serialized from the `firs_serialization` function. Then performs
# other transformations.
rdd = ctx.textFile("ckpt1").map(...).map(...)
等等。我想摆脱序列化方法和多重保存/读取 - 顺便说一下,它是否会影响效率?我认为是的。
任何提示? 提前谢谢。
答案 0 :(得分:1)
这看起来很简单,因为它是,但我建议写出中间阶段,同时继续重用现有的RDD(侧栏:使用数据集/数据帧而不是RDD来获得更多性能)并继续处理,写出来你去的中间结果。
当您已经处理了数据(理想情况下甚至是缓存!)以供进一步使用时,无需支付从磁盘/网络读取的罚款。
使用您自己的代码的示例:
# initialize the pipeline and perform the first set of transformations.
ctx = pyspark.SparkContext('local', 'MyPipeline')
rdd = ctx.textFile(...).map(...).map(...)
# first checkpoint: the `first_serialization` function serializes
# the data into properly formatted string.
string_rdd = rdd..map(first_serialization)
string_rdd.saveAsTextFile("ckpt1")
# reuse the existing RDD after writing out the intermediate results
rdd = rdd.map(...).map(...) # rdd here is the same variable we used to create the string_rdd results above. alternatively, you may want to use the string_rdd variable here instead of the original rdd variable.