目前,我在每个组件中设置了每个创建的钩子中的语言环境:
...
created () {
moment.locale('nl')
}
...
这可以在一个规则适用于所有组件的地方进行吗?
我正在使用vue webpack模板。
答案 0 :(得分:4)
您可能想要使用Object.definePrototype
。将下面的代码插入您的条目js文件(webpack模板中的src/main.js
)。
import moment from 'moment';
// ...
moment.locale('nl');
Object.definePrototype(Vue.prototype, '$moment', { value: moment });
然后,您可以在每个组件中使用this.$moment()
时刻
这个解决方案是introduced by Anthony Gore,我确实认为它完全符合您的要求。
答案 1 :(得分:4)
在VUE 2.5中可以这样做:
# Placeholder
x = tf.placeholder(dtype=tf.float32, shape=[None, n_features])
y = tf.placeholder(dtype=tf.float32)
def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([4, n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))}
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
import pdb;
pdb.set_trace()
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.squared_difference(prediction, y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 5
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Training the data
for epoch in range(hm_epochs):
epoch_loss = 0
for i in range(0, len(y_train) // batch_size):
epoch_x, epoch_y = next_batch(batch_size, x_train, y_train )
_, c = sess.run([optimizer, cost], feed_dict = {x: epoch_x, y: epoch_y.reshape(-1,1)})
epoch_loss += c
print ('Completed %d'%(i))
print('Epoch', epoch, 'Completed out of', hm_epochs, 'loss:', epoch_loss)
#testing the data
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print ('Accuracy:', accuracy.eval({x:x_test, y:y_test.reshape(-1,1)}))
train_neural_network(x)
答案 2 :(得分:1)
...
created () {
this.$root.$moment.locale("nl");
}
...