我构建了10篇论文的元数据。 dput()
结果如下所示:
> dput(itemlist)
structure(list(title = c("钱学森工程科学思想的实践者 [科普文章]",
"超高周疲劳裂纹萌生与初始扩展的特征尺度 [科普文章]", "Proceedings of International conference on Airworthiness & Fatigue – 7th ICSAELS Series Conference [期刊论文]",
"一种热机械疲劳实验的装置和方法 [专利]", "IUTAM和ICTAM的起源和历程 [科普文章]",
"加载频率对金属材料超高周疲劳性能的影响 [会议论文]", "金属材料超高周疲劳行为的Monte-Carlo模拟 [会议论文]",
"Vibration behavior and response to an accidental collision of SFT prototype in Qiandao Lake (China) [会议论文]",
"A simulation on microstructure sensitivity to very-high-cycle fatigue behavior of metallic materials [会议论文]",
"Effect of traveling wave on vortex-induced vibrations of submerged floating tunnel tethers [会议论文]"
), publish = c("2014", "2014", " 2013", "专利类型: 发明专利, 专利号: ZL2009102374751, 申请日期: 2012, 公开日期: 2012-12-27",
"2012", "第十五届全国疲劳与断裂学术会议摘要及论文集, 中国广东佛山",
"第十五届全国疲劳与断裂学术会议摘要及论文集, 中国广东佛山", "The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10"
), author = c("丁雁生; 洪友士; 金和", "洪友士; 中国科学院老科技工作者协会工程力学分会",
"Sih G C; Hong YS(洪友士)", "谢季佳; 赵爱国; 武晓东; 洪友士",
"陈杰; 刘洋; 汤亚南; 洪友士", "赵爱国; 洪友士; 谢季佳", "雷铮强; 洪友士; 谢季佳; 赵爱国",
"Zhang SY(张双寅); Wang L(王雷); Hong YS(洪友士)", "Lei ZQ(雷铮强); Xie JJ(谢季佳); Zhao AG(赵爱国); Hong YS(洪友士)",
"Wu XD(武晓东); Ge F(葛斐); Hong YS(洪友士)")), .Names = c("title",
"publish", "author"), row.names = c(NA, 10L), class = "data.frame")
我发现tidyr可以通过一个属性中的每个元素分隔列表。在这个例子中,我将“author”分成不同的行:
> dput(itemlist_tidy)
structure(list(title = c("钱学森工程科学思想的实践者 [科普文章]",
"钱学森工程科学思想的实践者 [科普文章]", "钱学森工程科学思想的实践者 [科普文章]",
"超高周疲劳裂纹萌生与初始扩展的特征尺度 [科普文章]", "超高周疲劳裂纹萌生与初始扩展的特征尺度 [科普文章]",
"Proceedings of International conference on Airworthiness & Fatigue – 7th ICSAELS Series Conference [期刊论文]",
"Proceedings of International conference on Airworthiness & Fatigue – 7th ICSAELS Series Conference [期刊论文]",
"一种热机械疲劳实验的装置和方法 [专利]", "一种热机械疲劳实验的装置和方法 [专利]",
"一种热机械疲劳实验的装置和方法 [专利]", "一种热机械疲劳实验的装置和方法 [专利]",
"IUTAM和ICTAM的起源和历程 [科普文章]", "IUTAM和ICTAM的起源和历程 [科普文章]",
"IUTAM和ICTAM的起源和历程 [科普文章]", "IUTAM和ICTAM的起源和历程 [科普文章]",
"加载频率对金属材料超高周疲劳性能的影响 [会议论文]", "加载频率对金属材料超高周疲劳性能的影响 [会议论文]",
"加载频率对金属材料超高周疲劳性能的影响 [会议论文]", "金属材料超高周疲劳行为的Monte-Carlo模拟 [会议论文]",
"金属材料超高周疲劳行为的Monte-Carlo模拟 [会议论文]", "金属材料超高周疲劳行为的Monte-Carlo模拟 [会议论文]",
"金属材料超高周疲劳行为的Monte-Carlo模拟 [会议论文]", "Vibration behavior and response to an accidental collision of SFT prototype in Qiandao Lake (China) [会议论文]",
"Vibration behavior and response to an accidental collision of SFT prototype in Qiandao Lake (China) [会议论文]",
"Vibration behavior and response to an accidental collision of SFT prototype in Qiandao Lake (China) [会议论文]",
"A simulation on microstructure sensitivity to very-high-cycle fatigue behavior of metallic materials [会议论文]",
"A simulation on microstructure sensitivity to very-high-cycle fatigue behavior of metallic materials [会议论文]",
"A simulation on microstructure sensitivity to very-high-cycle fatigue behavior of metallic materials [会议论文]",
"A simulation on microstructure sensitivity to very-high-cycle fatigue behavior of metallic materials [会议论文]",
"Effect of traveling wave on vortex-induced vibrations of submerged floating tunnel tethers [会议论文]",
"Effect of traveling wave on vortex-induced vibrations of submerged floating tunnel tethers [会议论文]",
"Effect of traveling wave on vortex-induced vibrations of submerged floating tunnel tethers [会议论文]"
), publish = c("2014", "2014", "2014", "2014", "2014", " 2013",
" 2013", "专利类型: 发明专利, 专利号: ZL2009102374751, 申请日期: 2012, 公开日期: 2012-12-27",
"专利类型: 发明专利, 专利号: ZL2009102374751, 申请日期: 2012, 公开日期: 2012-12-27",
"专利类型: 发明专利, 专利号: ZL2009102374751, 申请日期: 2012, 公开日期: 2012-12-27",
"专利类型: 发明专利, 专利号: ZL2009102374751, 申请日期: 2012, 公开日期: 2012-12-27",
"2012", "2012", "2012", "2012", "第十五届全国疲劳与断裂学术会议摘要及论文集, 中国广东佛山",
"第十五届全国疲劳与断裂学术会议摘要及论文集, 中国广东佛山", "第十五届全国疲劳与断裂学术会议摘要及论文集, 中国广东佛山",
"第十五届全国疲劳与断裂学术会议摘要及论文集, 中国广东佛山", "第十五届全国疲劳与断裂学术会议摘要及论文集, 中国广东佛山",
"第十五届全国疲劳与断裂学术会议摘要及论文集, 中国广东佛山", "第十五届全国疲劳与断裂学术会议摘要及论文集, 中国广东佛山",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10",
"The 1st International Symposium on Archimedes Bridge, Qiandao Lake, China, 2010-10"
), author = c("丁雁生", " 洪友士", " 金和", "洪友士", " 中国科学院老科技工作者协会工程力学分会",
"Sih G C", " Hong YS(洪友士)", "谢季佳", " 赵爱国", " 武晓东",
" 洪友士", "陈杰", " 刘洋", " 汤亚南", " 洪友士", "赵爱国", " 洪友士",
" 谢季佳", "雷铮强", " 洪友士", " 谢季佳", " 赵爱国", "Zhang SY(张双寅)",
" Wang L(王雷)", " Hong YS(洪友士)", "Lei ZQ(雷铮强)", " Xie JJ(谢季佳)",
" Zhao AG(赵爱国)", " Hong YS(洪友士)", "Wu XD(武晓东)", " Ge F(葛斐)",
" Hong YS(洪友士)")), row.names = c(NA, -32L), class = "data.frame", .Names = c("title",
"publish", "author"))
我的重点是“作者”专栏:
现在,我想将“author”列分成不同的列,以便通过igraph绘制共同作者图。看起来“tidyr”是最好的选择,但它不起作用:
> library(tidyr)
> v_t <- separate(itemlist, col="author", sep = ";", remove = TRUE, convert = FALSE)
Error in simplifyPieces(pieces, n, fill == "left") :
argument "into" is missing, with no default
我无法理解错误消息的确切含义。我们需要满足哪些条件才能将“作者”分成许多列。我认为,因为tidyr提供了分隔行或列的功能,所以它必须是一种分离使用这些表的方法。我们应该意识到吗?
答案 0 :(得分:0)
Separate在函数中需要参数into
。这些应该是要创建的变量的名称。你的电话不包括参数。
帮助文件中的改编示例:
library(dplyr)
library(tidyr)
df <- data.frame(x = c(NA, "a.b", "a.d", "b.c"))
separate(data = df, col = x, into = c("A", "B"))
A B
1 <NA> <NA>
2 a b
3 a d
4 b c
您可以使用stringr中的str_count()
来确定作者列中的最大作者数,然后使用它来指定要在separate()
函数中创建的列数。
我用这个q&amp; a作为灵感:Separate a String using Tidyr's "separate" into Multiple Columns and then Create a New Column with Counts
以下是简化数据集的示例:
df <- data.frame(id = c(1,2,3),
author = c("name1; name2; name3",
"name1; name2", "name1"))
df
id author
1 1 name1; name2; name3
2 2 name1; name2
3 3 name1
library(tidyr)
library(stringr)
str_count(df$author, ";")
[1] 2 1 0
max_n_authors <- max(str_count(df$author, ";")) + 1
max_n_authors
[1] 3
paste("author", 1:max_n_authors)
[1] "author 1" "author 2" "author 3"
df <- df %>%
separate(., col = author, into = paste("author", 1:max_n_authors))
Warning message:
Too few values at 2 locations: 2, 3
df
id author 1 author 2 author 3
1 1 name1 name2 name3
2 2 name1 name2 <NA>
3 3 name1 <NA> <NA>