R:预测组的新值

时间:2017-08-24 08:58:17

标签: r predict tidyverse

我为数据框中的每个组计算了不同的回归:

DF.L <- DF %>%
group_by(Channel) %>%
do(Fit = rlm(L ~ -1 + Y + I(Y^2), data = .))

我想将这组回归应用于另一个数据框。为此,我正在测试如何将其应用于同一数据框:

DF %>%
group_by(Channel) %>%
do({
    Lfit <- predict(subset(DF.L, Channel == unique(.$Channel))$Fit, .)
    data.frame(., Lfit)
})
glimpse(DF)

但我一直收到这个错误:

Error in UseMethod("predict") : 
  no applicable method for 'predict' applied to an object of class "list"
Calls: %>% ... do_.grouped_df -> eval -> eval -> predict -> predict

我做错了什么?

2 个答案:

答案 0 :(得分:4)

使用内置的ChickWeight数据:

library(dplyr)
library(MASS)
library(broom)
library(tidyr)
library(ggplot2)


head(ChickWeight)
  weight Time Chick Diet
1     42    0     1    1
2     51    2     1    1
3     59    4     1    1
4     64    6     1    1
5     76    8     1    1
6     93   10     1    1

适合某些型号

ChickWeight_models <- ChickWeight %>% 
  group_by(Diet) %>% 
  do(fit = MASS::rlm(weight ~ Time + I(Time^2), data = .))

ChickWeight_models
Source: local data frame [4 x 2]
Groups: <by row>

# A tibble: 4 x 2
    Diet       fit
* <fctr>    <list>
1      1 <S3: rlm>
2      2 <S3: rlm>
3      3 <S3: rlm>
4      4 <S3: rlm>

所以我为 DF.L 创建了一个非常相似的对象。它是一个包含四个组的框架,每个组在列表列中都有一个rlm对象,名为 fit

制作一些测试数据

现在我将编制一些数据来测试这个模型。在这种情况下,我只需要获取原始数据并为每个变量添加一些噪声。

ChickWeight_simulated <- ChickWeight %>% 
  mutate(Time = Time + runif(length(Time)),
         weight = weight + rnorm(length(weight)))

ChickWeight_simulated 
    weight       Time Chick Diet
1 42.72075  0.9786272     1    1
2 51.12669  2.8399631     1    1
3 58.64632  4.4576380     1    1
4 63.77617  6.1083591     1    1
5 75.40434  8.1051792     1    1
6 91.75830 10.7899030     1    1

现在我们想要将模型的数据框与要测试的新数据相结合。首先我们group_bytidyr::nest模拟数据。这将创建一个对象,该对象是一个包含四个组的数据框和一个名为 data 的列表列,其中每个元素都包含一个汇总的数据框。

ChickWeight_simulated %>% group_by(Diet) %>% nest()
# A tibble: 4 x 2
    Diet               data
  <fctr>             <list>
1      1 <tibble [220 x 3]>
2      2 <tibble [120 x 3]>
3      3 <tibble [120 x 3]>
4      4 <tibble [118 x 3]>

将原始模型添加到新数据

然后我们可以将它加入模型数据框:

ChickWeight_simulated %>% group_by(Diet) %>% nest() %>% 
  full_join(ChickWeight_models)
# A tibble: 4 x 3
    Diet               data       fit
  <fctr>             <list>    <list>
1      1 <tibble [220 x 3]> <S3: rlm>
2      2 <tibble [120 x 3]> <S3: rlm>
3      3 <tibble [120 x 3]> <S3: rlm>
4      4 <tibble [118 x 3]> <S3: rlm>

现在我们再次按饮食进行分组,并使用broom::augment对新模拟数据上的每个模型进行预测。由于每个组都是一行,因此适合数据各有一个元素;我们必须使用[[1]]将每个list-column中的单个元素提取为可用的形式。

ChickWeight_simulated_predicted <-
ChickWeight_simulated %>% group_by(Diet) %>% nest() %>% 
  full_join(ChickWeight_models) %>% 
  group_by(Diet) %>% 
  do(augment(.$fit[[1]], newdata = .$data[[1]])) 

head(ChickWeight_simulated_predicted)
# A tibble: 6 x 6
# Groups:   Diet [1]
    Diet   weight       Time Chick  .fitted  .se.fit
  <fctr>    <dbl>      <dbl> <ord>    <dbl>    <dbl>
1      1 42.72075  0.9786272     1 43.62963 2.368838
2      1 51.12669  2.8399631     1 51.80855 1.758385
3      1 58.64632  4.4576380     1 59.67606 1.534051
4      1 63.77617  6.1083591     1 68.43218 1.534152
5      1 75.40434  8.1051792     1 80.00678 1.647612
6      1 91.75830 10.7899030     1 97.26450 1.726331

完整性检查

为了证明这真的只使用来自饮食级别的模拟数据的饮食的特定模型,我们可以看到模型的适合度。< / p>

ChickWeight_simulated_predicted %>% 
  ggplot(aes(Time, weight)) + 
  geom_point(shape = 1) + 
  geom_ribbon(aes(Time, 
                  ymin = .fitted-1.96*.se.fit, 
                  ymax = .fitted+1.96*.se.fit),
              alpha = 0.5, fill = "black") +
  geom_line(aes(Time, .fitted), size = 1, color = "red") +
  facet_wrap(~Diet)

enter image description here

答案 1 :(得分:2)

我认为你的错误来自你如何调用预测。我无法修复您的确切代码,但这是一种从模型中获取预测的简单方法。使用purrrnest的更复杂方法概述于:http://ijlyttle.github.io/isugg_purrr/presentation.html#(1)

更新 - purrrnest方式

只需添加此内容即可在tidyverse内使用predict轻松完成此操作。有关详细信息,请参阅上面的链接。

library(tidyverse)

# shuffle the rows to mix up the species
set.seed(1234)
myiris <- iris[sample(nrow(iris), replace = F),]

# create first dataset - use the first 50 rows for running the model
iris_nested <- 
    myiris[1:50,] %>% 
    nest(-Species) %>% 
    rename(myorigdata = data)

# create second dataset - use the other 100 rows for making predictions
new_iris_nested <- 
    myiris[51:150,] %>% 
    nest(-Species) %>% 
    rename(mynewdata = data)

# make a model function
my_rlm <- function(df) {
    MASS::rlm(Sepal.Length ~ Petal.Length + Petal.Width, data = df)
}

# get the predictions (see the GitHub link above which breaks this into steps)
predictions_tall <- 
    iris_nested %>% 
    mutate(my_model = map(myorigdata, my_rlm)) %>% 
    full_join(new_iris_nested, by = "Species") %>% 
    mutate(my_new_pred = map2(my_model, mynewdata, predict)) %>% 
    select(Species, mynewdata, my_new_pred) %>% 
    unnest(mynewdata, my_new_pred) %>% 
    rename(modeled = my_new_pred, measured = Sepal.Length) %>%
    gather("Type", "Sepal.Length", modeled, measured)

嵌套的predictions_tall对象如下所示:

predictions_tall %>% nest(-Species, -type) %>% as.tibble()
# A tibble: 6 x 3
     Species     type                  data
      <fctr>    <chr>                <list>
1     setosa  modeled <data.frame [32 x 4]>
2 versicolor  modeled <data.frame [33 x 4]>
3  virginica  modeled <data.frame [35 x 4]>
4     setosa measured <data.frame [32 x 4]>
5 versicolor measured <data.frame [33 x 4]>
6  virginica measured <data.frame [35 x 4]>

最后,显示预测结果的图表:

predictions_tall %>%
    ggplot(aes(x = Petal.Length, y = Sepal.Length)) +
    geom_line(aes(color = Species, linetype = Type))

species_plot

ORIGINAL - broom方式

我现在更新了这个,只使用该组的模型计算每个组的预测。

这种方法使用broom包 - 特别是augment函数 - 来添加拟合值。点击此处:https://cran.r-project.org/web/packages/broom/vignettes/broom.html

由于您不提供数据,我在这里使用iris

library(tidyverse)
library(broom)

# first shuffle around the rows of iris
set.seed(1234)
myiris <- iris[sample(nrow(iris), replace = F),]

# first data - first 25 rows for running the models on
origiris <- 
    myiris[1:25,] %>% 
    nest(-Species) %>% 
    rename(origdata = data)

# second data - last 50 rows for predicting on
prediris <- 
    myiris[101:150,] %>% 
    nest(-Species) %>% 
    rename(preddata = data)


# estimate models on the first 25 rows
# a separate model is estimated for each species
iris_mod <- 
    origiris %>% 
    mutate(mod = map(origdata, ~ MASS::rlm(Sepal.Length ~ Petal.Length + Petal.Width, data = .)))

首先得到原始数据集的拟合值(不是必需的,仅用于说明):

# get fitted values for the first dataset (origdata)
origiris_aug <-  
    iris_mod %>% 
    mutate(origpred = map(mod, augment)) %>% 
    unnest(origpred) %>% 
    as.tibble()

origiris_aug预测数据框如下所示:

origiris_aug
# A tibble: 25 x 10
   Species .rownames Sepal.Length Petal.Length Petal.Width  .fitted   .se.fit      .resid
    <fctr>     <chr>        <dbl>        <dbl>       <dbl>    <dbl>     <dbl>       <dbl>
 1  setosa        18          5.1          1.4         0.3 5.002797 0.1514850  0.09720290
 2  setosa         2          4.9          1.4         0.2 4.931824 0.1166911 -0.03182417
 3  setosa        34          5.5          1.4         0.2 4.931824 0.1166911  0.56817583
 4  setosa        40          5.1          1.5         0.2 4.981975 0.1095883  0.11802526
 5  setosa        39          4.4          1.3         0.2 4.881674 0.1422123 -0.48167359
 6  setosa        36          5.0          1.2         0.2 4.831523 0.1784156  0.16847698
 7  setosa        25          4.8          1.9         0.2 5.182577 0.2357614 -0.38257703
 8  setosa        31          4.8          1.6         0.2 5.032125 0.1241074 -0.23212531
 9  setosa        42          4.5          1.3         0.3 4.952647 0.1760223 -0.45264653
10  setosa        21          5.4          1.7         0.2 5.082276 0.1542594  0.31772411
# ... with 15 more rows, and 2 more variables: .hat <dbl>, .sigma <dbl>

现在你真正想要的是 - 对新数据集进行预测:

# get fitted values for the second dataset (preddata)
# each model is fitted to the appropriate species' nested dataframe

prediris_aug <- 
    iris_mod %>% 
    inner_join(prediris, by = "Species") %>% 
    map2_df(.x = iris_mod$mod, .y = prediris$preddata, .f = ~augment(.x, newdata = .y)) %>% 
    as.tibble()

prediris_aug数据框如下所示:

prediris_aug
# A tibble: 50 x 7
   .rownames Sepal.Length Sepal.Width Petal.Length Petal.Width  .fitted  .se.fit
       <chr>        <dbl>       <dbl>        <dbl>       <dbl>    <dbl>    <dbl>
 1       105          6.5         3.0          5.8         2.2 8.557908 3.570269
 2       115          5.8         2.8          5.1         2.4 8.348800 3.666631
 3       117          6.5         3.0          5.5         1.8 8.123565 3.005888
 4       139          6.0         3.0          4.8         1.8 7.772511 2.812748
 5       103          7.1         3.0          5.9         2.1 8.537086 3.475224
 6       107          4.9         2.5          4.5         1.7 7.551086 2.611123
 7       119          7.7         2.6          6.9         2.3 9.180537 4.000412
 8       135          6.1         2.6          5.6         1.4 7.889823 2.611457
 9       124          6.3         2.7          4.9         1.8 7.822661 2.838502
10       118          7.7         3.8          6.7         2.2 9.009263 3.825613
# ... with 40 more rows