+--------------------+---------------+-------+
| Location | Date | Value |
+--------------------+---------------+-------+
| India | 2015-03-15 | -200|
| India | 2015-02-15 | 140 |
| India | 2015-01-15 | 155 |
| India | 2015-12-15 | 85 |
| India | 2015-11-15 | 45 |
| China | 2015-03-15 | 199 |
| China | 2015-02-15 | 164 |
| China | 2015-01-15 | 209 |
| China | 2015-12-15 | 24 |
| China | 2015-11-15 | 11 |
| Russia | 2015-03-15 | 48 |
| Russia | 2015-02-15 | 104 |
| Russia | 2015-01-15 | 106 |
| Russia | 2015-12-15 | -20 |
| Russia | 2015-11-15 | 10 |
+--------------------+---------------+-------+
并且,为了方便起见,这里是您可以毫无问题地复制的版本:
Location Date Value
0 India 2015-03-15 -200
1 India 2015-02-15 140
2 India 2015-01-15 155
3 India 2015-12-15 85
4 India 2015-11-15 45
5 China 2015-03-15 199
6 China 2015-02-15 164
7 China 2015-01-15 209
8 China 2015-12-15 24
9 China 2015-11-15 11
10 Russia 2015-03-15 48
11 Russia 2015-02-15 104
12 Russia 2015-01-15 106
13 Russia 2015-12-15 -20
14 Russia 2015-11-15 10
如何在不必手动删除所有分隔符和行分隔符的情况下使用df.read_clipboard
读取它?
如果不是sep
,则使用delimiter
或---+----
会很容易。
答案 0 :(得分:3)
In [129]: pd.read_clipboard(comment='+', sep='\s*\|\s*', usecols=[1,2,3], engine='python')
Out[129]:
Location Date Value
0 India 2015-03-15 -200
1 India 2015-02-15 140
2 India 2015-01-15 155
3 India 2015-12-15 85
4 India 2015-11-15 45
5 China 2015-03-15 199
6 China 2015-02-15 164
7 China 2015-01-15 209
8 China 2015-12-15 24
9 China 2015-11-15 11
10 Russia 2015-03-15 48
11 Russia 2015-02-15 104
12 Russia 2015-01-15 106
13 Russia 2015-12-15 -20
14 Russia 2015-11-15 10