xgboost.cv给出TypeError:'StratifiedKFold'对象不可迭代

时间:2017-08-23 21:14:10

标签: python machine-learning scikit-learn xgboost grid-search

我一直在尝试在python 2.7中实现这个代码。它给了我这个错误。我很感激帮助。 我有最新版本的sklearn(0.18.1)和xgboost(0.6)

import xgboost as xgb
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import f1_score, roc_auc_score, confusion_matrix

nfold = 3
kf = StratifiedKFold(nfold, shuffle=True)

dtrain = xgb.DMatrix(x_train, label=y_train)
dtest = xgb.DMatrix(x_test)

params = {
    'objective' : 'binary:logistic',
    'eval_metric': 'auc',
    'min_child_weight':10,
    'scale_pos_weight':scale,
}
hist = xgb.cv(params, dtrain, num_boost_round=10000, folds=kf, early_stopping_rounds=50, as_pandas=True, verbose_eval=100, show_stdv=True, seed=0)

我收到此错误:

TypeErrorTraceback (most recent call last)
<ipython-input-52-41c415e116d7> in <module>()
      5     'scale_pos_weight':scale,
      6 }
----> 7 hist = xgb.cv(params, dtrain, num_boost_round=10000, folds=kf, early_stopping_rounds=50, as_pandas=True, verbose_eval=100, show_stdv=True, seed=0)
      8 
      9 

/opt/conda/lib/python2.7/site-packages/xgboost/training.pyc in cv(params, dtrain, num_boost_round, nfold, stratified, folds, metrics, obj, feval, maximize, early_stopping_rounds, fpreproc, as_pandas, verbose_eval, show_stdv, seed, callbacks)
    369 
    370     results = {}
--> 371     cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc, stratified, folds)
    372 
    373     # setup callbacks

/opt/conda/lib/python2.7/site-packages/xgboost/training.pyc in mknfold(dall, nfold, param, seed, evals, fpreproc, stratified, folds)
    236         idset = [randidx[(i * kstep): min(len(randidx), (i + 1) * kstep)] for i in range(nfold)]
    237     elif folds is not None:
--> 238         idset = [x[1] for x in folds]
    239         nfold = len(idset)
    240     else:

TypeError: 'StratifiedKFold' object is not iterable

2 个答案:

答案 0 :(得分:2)

.jar函数内,尝试替换

xgb.cv

folds=kf

应用split method以便将其拆分为培训和验证。然后我们将其转换为folds=list(kf.split(x_train,y_train)) ,以便它是一个可迭代的对象。

如果不起作用,请尝试不使用list。那就是:

list

答案 1 :(得分:0)

如错误所示,kf是'StratifiedKFold'对象。

这个对象有一个.split()方法,它会为你提供一个包含不同列号/有效元素索引的生成器。

folds_generator = kf.split(x_train, y_train)

但是,请阅读xgb.cv doc

  

folds:list,提供了使用预定义CV折叠列表的可能性(每个元素必须是测试折叠索引的向量)。提供折叠时,将忽略nfold和分层参数。

folds需要一个类型为'list'的参数。您可以使用以下代码将生成器转换为列表

folds_list = list(folds_generator)