我的样本量非常小,包含16个坐标:
x <- c(13.41667,13.31070,13.58806,13.31070,13.18361,
13.19694,13.27821,13.25917,13.62833,13.31056,
13.30170,13.30880,13.40210,13.41010,13.53250,
13.06220)
y <- c(52.47944,52.45768,52.54944,52.45768,52.43417,
52.50778,52.50499,52.57444,52.44444,52.45750,
52.45370,52.56440,52.46750,52.52050,52.38220,
52.38130)
我首先尝试使用kmeans
对它们进行聚类,但我认为面向圆的聚类并不是我想要的。我期待着找到一种可能,每个群集至少有2个点聚集点,这意味着它们的密度
z <- cbind(x,y)
res <- dbscan(z, eps=0.05, minPts = 2)
hullplot(z,res)
但是这种方式导致在区域外有许多点的聚类。你们有没有其他想法如何使用这样的小样本来聚类空间数据?