我正在尝试匹配图像中的RGB值。
% R G B
RGBset = [ 3 9 12;
4 8 13;
11 13 13;
8 3 2]
img(:,:,1) = [1 2 3
6 5 4
7 9 8
10 11 12];
img(:,:,2) = [3 4 8;
6 7 8;
11 10 9;
12 13 14];
img(:,:,3)= [3 7 2;
4 9 10;
5 11 12;
6 13 14]
在此图像中,只有一个RGB值与RGB [11,13,13]
匹配,因此预期输出为:
[0 0 0;
0 0 0;
0 0 0;
0 1 0]; % reshape(img(4,2,:),1,3) = [11, 13 13] is available in RGBset
% no other RGB value is present in the image
我制作了这段代码,但对于较大的图片来说速度非常慢。
matched= zeros(img(:,:,1));
for r=1:size(img(:,:,1),1)
for c=1:size(img(:,:,2),2)
matched(r,c)=ismember(reshape(img(r,c,:),1,3),RGBset,'rows');
end
end
更快的解决方案是什么?
答案 0 :(得分:5)
我们可以将每个RGB三元组减少为标量,我们将对RGBset
和img
执行此操作。这会将它们分别减少到2D
和1D
矩阵。我们称之为维数减少。通过这些减少的数据,我们实现了内存效率,并且希望能够带来性能提升。
因此,涵盖这些基础的解决方案看起来像这样 -
% Scaling array for dim reduction
s = [256^2, 256, 1].';
% Reduce dims for RGBset and img
RGBset1D = RGBset*s;
img1D = reshape(img,[],3)*s;
% Finally use find membership and reshape to 2D
out = reshape(ismember(img1D, RGBset1D), size(img,1), []);
矢量化解决方案的基准测试
基准代码 -
% R G B
RGBset = [ 3 9 12;
4 8 13;
11 13 13;
8 3 2]
% Setup inputs
img = randi(255, 2000, 2000, 3);
img(3,2,:) = RGBset(4,:);
% Luis's soln
disp('--------------------- Reshape + Permute ------------------')
tic
img2 = reshape(permute(img, [3 1 2]), 3, []).';
matched = ismember(img2, RGBset, 'rows');
matched = reshape(matched, size(img,1), []);
toc
% Proposed in this post
disp('--------------------- Dim reduction ------------------')
tic
s = [256^2, 256, 1].';
RGBset1D = RGBset*s;
img1D = reshape(img,[],3)*s;
out = reshape(ismember(img1D, RGBset1D), size(img,1), []);
toc
基准输出 -
--------------------- Reshape + Permute ------------------
Elapsed time is 3.101870 seconds.
--------------------- Dim reduction ------------------
Elapsed time is 0.031589 seconds.
答案 1 :(得分:3)
img2 = reshape(permute(img, [3 1 2]), 3, []).';
matched = ismember(img2, RGBset, 'rows');
matched = reshape(matched, size(img,1), []);
这会创建一个3列矩阵img2
,其中每行对应img
中的一个像素。这样ismember(..., 'rows')
可以以矢量化方式应用。然后根据需要重新获得所获得的结果。
答案 2 :(得分:0)
你可以循环遍历颜色,这比循环每个像素要快得多。
% Set up your colours into the 3rd dimension, so they match along the same axis
RGB3D = reshape(RGBset,[],1,3);
% Loop over them
for ii = 1:size(RGB3D, 1)
% See if all 3 members of the colour match any pixel
matched = all(ismember(img, RGB3D(ii,:,:)),3)
if any(matched)
disp(matched)
disp(['matched color: ' num2str(ii)]);
% do something else with the matched pixels
end
end