我为多种语言和多种设备定义layouts
,如下所示:
问题:但我需要根据从spinner
中选择的语言选择 *package datapipeline;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.regex.Pattern;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.storage.StorageLevel;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;
import org.onosproject.net.Device;
import scala.Tuple2;
public final class SparkConsumer {
//private static SparkContext sc = new SparkContext();
private static final Pattern SPACE = Pattern.compile(" ");
private static void setLogLevels() {
boolean log4jInitialized = Logger.getRootLogger().getAllAppenders().hasMoreElements();
if (!log4jInitialized) {
// We first log something to initialize Spark's default logging, then we override the
// logging level.
Logger.getLogger(SparkConsumer.class).info("Setting log level to [WARN] for streaming example." +
" To override add a custom log4j.properties to the classpath.");
Logger.getRootLogger().setLevel(Level.WARN);
}
}
public static void main(String[] args) throws Exception{
String jars[]={"C:\\DeviceStreaming-1.0.0.jar"};
setLogLevels()
SparkConf sparkConf = new SparkConf().setAppName("CustomerKafkaConsumerThread")
.set("spark.local.ip","16.214.240.4:9092")
.setMaster("local[*]").setJars(jars);
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(3000));
JavaSparkContext ctx = JavaSparkContext.fromSparkContext(SparkContext.getOrCreate(sparkConf));
SQLContext sqlContext = new SQLContext(ctx);
Map<String, Integer> topicMap = new HashMap<>();
topicMap.put("iot", 10);
JavaPairReceiverInputDStream<String, String> messages = KafkaUtils.createStream(jssc,"16.214.240.4:2181","SparkConsumer", topicMap,StorageLevel.MEMORY_ONLY());
messages.print();
JavaDStream<String> json = messages.map(
new Function<Tuple2<String, String>, String>() {
public String call(Tuple2<String, String> message) {
return message._2();
}
}
);
json.foreachRDD(rdd -> {
//DataFrame df = sqlContext.read().json(rdd);
DataFrame df=sqlContext.createDataFrame(rdd, Device.class);
df.show();
df.printSchema();
});
jssc.start();
jssc.awaitTermination();
}
}*
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.iot.app.kafka</groupId>
<artifactId>DeviceStreaming</artifactId>
<packaging>jar</packaging>
<version>1.0.0</version>
<name>DeviceStreaming</name>
<dependencies>
<!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.7.1-1</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.9.0.0</version>
</dependency>
<!-- <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-network-common_2.11</artifactId>
<version>2.1.0</version> </dependency> -->
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-network-common_2.11 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-network-common_2.11</artifactId>
<version>1.6.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka_2.11 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.11</artifactId>
<version>1.6.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming_2.11 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>1.6.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.10 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>1.6.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.glassfish/javax.json -->
<dependency>
<groupId>org.glassfish</groupId>
<artifactId>javax.json</artifactId>
<version>1.0.4</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>1.6.3</version>
</dependency>
<dependency>
<groupId>org.spark-project.spark</groupId>
<artifactId>unused</artifactId>
<version>1.0.0</version>
<scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-annotations -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.4.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/javax.json/javax.json-api -->
<dependency>
<groupId>javax.json</groupId>
<artifactId>javax.json-api</artifactId>
<version>1.1</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.4.4</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-core -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.4.4</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_2.10</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>14.0.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.onosproject/onos-api -->
<dependency>
<groupId>org.onosproject</groupId>
<artifactId>onos-api</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8-assembly_2.11</artifactId>
<version>2.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>1.8.0</version>
</dependency>
<dependency>
<groupId>com.twitter</groupId>
<artifactId>bijection-avro_2.10</artifactId>
<version>0.9.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.googlecode.json-simple/json-simple -->
<dependency>
<groupId>com.googlecode.json-simple</groupId>
<artifactId>json-simple</artifactId>
<version>1.1</version>
</dependency>
</dependencies>
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<scala.version>2.10.4</scala.version>
</properties>
</project>
*Exception in thread "streaming-job-executor-0" java.lang.NoClassDefFoundError: scala/collection/GenTraversableOnce$class
at scala.reflect.internal.util.WeakHashSet.<init>(WeakHashSet.scala:19)
at scala.reflect.internal.util.WeakHashSet$.apply(WeakHashSet.scala:429)
at scala.reflect.internal.SymbolTable$perRunCaches$.<init>(SymbolTable.scala:310)
at scala.reflect.internal.SymbolTable.perRunCaches$lzycompute(SymbolTable.scala:304)
at scala.reflect.internal.SymbolTable.perRunCaches(SymbolTable.scala:304)
at scala.reflect.internal.Symbols$class.$init$(Symbols.scala:71)
at scala.reflect.internal.SymbolTable.<init>(SymbolTable.scala:13)
at scala.reflect.runtime.JavaUniverse.<init>(JavaUniverse.scala:12)
at scala.reflect.runtime.package$.universe$lzycompute(package.scala:16)
at scala.reflect.runtime.package$.universe(package.scala:16)
at org.apache.spark.sql.types.AtomicType.<init>(AbstractDataType.scala:134)
at org.apache.spark.sql.types.NumericType.<init>(AbstractDataType.scala:144)
at org.apache.spark.sql.types.FractionalType.<init>(AbstractDataType.scala:207*
,而不是设备语言。
答案 0 :(得分:0)
解决了我的问题:
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
String languageToLoad = "ar"; // your language you can get this as an input or save it in a file ,or do as your requirement
Locale locale = new Locale(languageToLoad);
Locale.setDefault(locale);
Configuration config = new Configuration();
config.locale = locale;
getBaseContext().getResources().updateConfiguration(config, null);
setContentView(R.layout.activity_main);
}
}