当我使用训练有素的体重时,我用image_layer
可视化我的第一层输出。但是,当我尝试想象时,我得到如下白色图像:
忽略最后四个,过滤器大小为7x7,其中有32个。
该模型基于以下架构(代码附加):
import numpy as np
import tensorflow as tf
import cv2
from matplotlib import pyplot as plt
% matplotlib inline
model_path = "T_set_4/Model/model.ckpt"
# Define the model parameters
# Convolutional Layer 1.
filter_size1 = 7 # Convolution filters are 7 x 7 pixels.
num_filters1 = 32 # There are 32 of these filters.
# Convolutional Layer 2.
filter_size2 = 7 # Convolution filters are 7 x 7 pixels.
num_filters2 = 64 # There are 64 of these filters.
# Fully-connected layer.
fc_size = 512 # Number of neurons in fully-connected layer.
# Define the data dimensions
# We know that MNIST images are 48 pixels in each dimension.
img_size = 48
# Images are stored in one-dimensional arrays of this length.
img_size_flat = img_size * img_size
# Tuple with height and width of images used to reshape arrays.
img_shape = (img_size, img_size)
# Number of colour channels for the images: 1 channel for gray-scale.
num_channels = 1
# Number of classes, one class for each of 10 digits.
num_classes = 2
def new_weights(shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.05))
def new_biases(length):
return tf.Variable(tf.constant(0.05, shape=[length]))
def new_conv_layer(input, # The previous layer.
num_input_channels, # Num. channels in prev. layer.
filter_size, # Width and height of each filter.
num_filters, # Number of filters.
use_pooling=True): # Use 2x2 max-pooling.
# Shape of the filter-weights for the convolution.
# This format is determined by the TensorFlow API.
shape = [filter_size, filter_size, num_input_channels, num_filters]
# Create new weights aka. filters with the given shape.
weights = new_weights(shape=shape)
# Create new biases, one for each filter.
biases = new_biases(length=num_filters)
# Create the TensorFlow operation for convolution.
# Note the strides are set to 1 in all dimensions.
# The first and last stride must always be 1,
# because the first is for the image-number and
# the last is for the input-channel.
# But e.g. strides=[1, 2, 2, 1] would mean that the filter
# is moved 2 pixels across the x- and y-axis of the image.
# The padding is set to 'SAME' which means the input image
# is padded with zeroes so the size of the output is the same.
layer = tf.nn.conv2d(input=input,
filter=weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Add the biases to the results of the convolution.
# A bias-value is added to each filter-channel.
layer += biases
# Rectified Linear Unit (ReLU).
# It calculates max(x, 0) for each input pixel x.
# This adds some non-linearity to the formula and allows us
# to learn more complicated functions.
layer = tf.nn.relu(layer)
# Use pooling to down-sample the image resolution?
if use_pooling:
# This is 2x2 max-pooling, which means that we
# consider 2x2 windows and select the largest value
# in each window. Then we move 2 pixels to the next window.
layer = tf.nn.max_pool(value=layer,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# norm1
norm1 = tf.nn.lrn(layer, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm1')
# Note that ReLU is normally executed before the pooling,
# but since relu(max_pool(x)) == max_pool(relu(x)) we can
# save 75% of the relu-operations by max-pooling first.
# We return both the resulting layer and the filter-weights
# because we will plot the weights later.
return layer, weights
def flatten_layer(layer):
# Get the shape of the input layer.
layer_shape = layer.get_shape()
# The shape of the input layer is assumed to be:
# layer_shape == [num_images, img_height, img_width, num_channels]
# The number of features is: img_height * img_width * num_channels
# We can use a function from TensorFlow to calculate this.
num_features = layer_shape[1:4].num_elements()
# Reshape the layer to [num_images, num_features].
# Note that we just set the size of the second dimension
# to num_features and the size of the first dimension to -1
# which means the size in that dimension is calculated
# so the total size of the tensor is unchanged from the reshaping.
layer_flat = tf.reshape(layer, [-1, num_features])
# The shape of the flattened layer is now:
# [num_images, img_height * img_width * num_channels]
# Return both the flattened layer and the number of features.
return layer_flat, num_features
def new_fc_layer(input, # The previous layer.
num_inputs, # Num. inputs from prev. layer.
num_outputs, # Num. outputs.
use_relu=True): # Use Rectified Linear Unit (ReLU)?
# Create new weights and biases.
weights = new_weights(shape=[num_inputs, num_outputs])
biases = new_biases(length=num_outputs)
# Calculate the layer as the matrix multiplication of
# the input and weights, and then add the bias-values.
layer = tf.matmul(input, weights) + biases
# Use ReLU?
if use_relu:
layer = tf.nn.relu(layer)
return layer
# Create the model
tf.reset_default_graph()
x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x')
x_image = tf.reshape(x, [-1, img_size, img_size, num_channels])
y_true = tf.placeholder(tf.float32, shape=[None, num_classes],
name='y_true')
y_true_cls = tf.argmax(y_true, dimension=1)
# Create the model footprint
layer_conv1, weights_conv1 = new_conv_layer(input=x_image,
num_input_channels=num_channels,
filter_size=filter_size1,
num_filters=num_filters1,
use_pooling=True)
layer_conv2, weights_conv2 = new_conv_layer(input=layer_conv1,
num_input_channels=num_filters1,
filter_size=filter_size2,
num_filters=num_filters2,
use_pooling=True)
layer_flat, num_features = flatten_layer(layer_conv2)
layer_fc1 = new_fc_layer(input=layer_flat,
num_inputs=num_features,
num_outputs=fc_size,
use_relu=True)
layer_fc2 = new_fc_layer(input=layer_fc1,
num_inputs=fc_size,
num_outputs=num_classes,
use_relu=False)
y_pred = tf.nn.softmax(layer_fc2)
y_pred_cls = tf.argmax(y_pred, dimension=1)
# Restore the model
saver = tf.train.Saver()
session = tf.Session()
saver.restore(session, model_path)
我创建可视化权重的代码来自以下内容: Source code
有人能告诉我培训或网络是否太浅?
答案 0 :(得分:0)
这是对培训早期阶段第一个卷积层产生的要素图(而不是权重)的完美描述。
第一层学习提取简单的特征,学习过程有点慢,因此你首先要学会模糊"输入图像,但一旦网络开始收敛,您将看到第一层将开始提取有意义的低级特征(边缘等)。
只需监控培训流程,让网络培训更多。
相反,如果你的表现不好(总是看一下验证准确度),你的功能图总是看起来很吵,你应该开始调整超参数(降低学习率,规范,...)以便提取有意义的功能,从而获得良好的结果