我有一个包含4列的数据框,我想使用qplot将列1映射到第2列,第3列映射到第4列并在同一图上绘制所有图,我需要扩展这个做20列的数据帧。 感谢您提供任何帮助
编辑 以下是我正在使用的数据框的示例:
1 2 3 4
1 0.01795918 0.9755562 0.02040816 0.05259072
2 0.04244898 0.9455753 0.03591837 0.03864464
3 0.05224490 0.9816900 0.06122449 0.03280435
4 0.07183673 0.9635419 0.08000000 0.03453257
5 0.09551020 0.9821122 0.10040816 0.03134642
6 0.12000000 0.9354895 0.11510204 0.03920271
7 0.13877551 0.9703654 0.13877551 0.03588973
8 0.16244898 0.9506424 0.15836735 0.03402917
9 0.17224490 0.9610043 0.18530612 0.03621932
10 0.20000000 0.9863483 0.19591837 0.03021983
11 0.22122449 0.9845782 0.22530612 0.03268187
12 0.22938776 0.9835922 0.22530612 0.03513692
....
我可以相互映射一个,但我需要一种方法将它们全部绘制到一个图表上
答案 0 :(得分:2)
比较在多个类别中测量的单个变量。在这种情况下,我提供了几个单变量的可视化,并将它们绘制在一个页面上。
library(ggplot2)
attach(iris)
plot_1 = ggplot(iris, aes(x=Petal.Length, colour=Species)) +
geom_density() +
labs(title="Density plots")
plot_2 = ggplot(iris, aes(x=Petal.Length, fill=Species)) +
geom_histogram(colour="grey30", binwidth=0.15) +
facet_grid(Species ~ .) +
labs(title="Histograms")
plot_3 = ggplot(iris, aes(y=Petal.Length, x=Species)) +
geom_point(aes(colour=Species),
position=position_jitter(width=0.05, height=0.05)) +
geom_boxplot(fill=NA, outlier.colour=NA) +
labs(title="Boxplots")
plot_4 = ggplot(iris, aes(y=Petal.Length, x=Species, fill=Species)) +
geom_dotplot(binaxis="y", stackdir="center", binwidth=0.15) +
labs(title="Dot plots")
library(gridExtra)
part_1 = arrangeGrob(plot_1, plot_2, heights=c(0.4, 0.6))
part_2 = arrangeGrob(plot_3, plot_4, nrow=2)
parts_12 = arrangeGrob(part_1, part_2, ncol=2, widths=c(0.6, 0.4))
# To save the plots
ggsave(file="figures/plots.png", parts_12, height=6, width=10, units="in")
的方案:2 强>
另一个视角可能是在同一页面上混合多个图表。我在下面显示;
# Libraries required
library(ggpubr)
# Data: ToothGrowth and mtcars data sets.
# ToothGrowth
data("ToothGrowth")
head(ToothGrowth)
# mtcars
data("mtcars")
head(mtcars)
mtcars$name <- rownames(mtcars) # add column name
mtcars$cyl <- as.factor(mtcars$cyl)
head(mtcars[, c("name", "wt", "mpg", "cyl")])
# create some plots
# Box plots and dot plots using the ToothGrowth data set
# Box plot
bxp<- ggboxplot(data = ToothGrowth, x="dose", y="len",
color = "dose", palette = "jco")
bxp
# Dot plot
dp<- ggdotplot(data = ToothGrowth, x="dose", y="len",
color = "dose", palette = "jco", binwidth = 1)
dp
# Bar plots and scatter plots using the mtcars data set
# Create an ordered bar plot by changing the fill color by the grouping variable “cyl”. Sorting will be done globally, but not by groups.
bp <- ggbarplot(mtcars, x = "name", y = "mpg",
fill = "cyl", # change fill color by cyl
color = "white", # Set bar border colors to white
palette = "jco", # jco journal color palett. see ?ggpar
sort.val = "asc", # Sort the value in ascending order
sort.by.groups = TRUE, # Sort inside each group
x.text.angle = 90 # Rotate vertically x axis texts
)
bp + font("x.text", size = 8)
# Scatter plots (sp)
sp <- ggscatter(mtcars, x = "wt", y = "mpg",
add = "reg.line", # Add regression line
conf.int = TRUE, # Add confidence interval
color = "cyl", palette = "jco", # Color by groups "cyl"
shape = "cyl" # Change point shape by groups "cyl"
)+
stat_cor(aes(color = cyl), label.x = 3) # Add correlation coefficient
sp
# Arrange on one page
# We will use the ggarrange() [in ggpubr]
ggarrange(bxp, dp, bp + rremove("x.text"),
labels = c("A", "B", "C"),
ncol = 2, nrow = 2)
# Alternatively, you can also use the function grid.arrange()[in gridExtra]
# Annotate the arranged figure R function: annotate_figure() [in ggpubr]
figure <- ggarrange(sp, bp + font("x.text", size = 10),
ncol = 1, nrow = 2)
annotate_figure(figure,
top = text_grob("Visualizing mpg", color = "red", face = "bold", size = 14),
bottom = text_grob("Data source: \n mtcars data set", color = "blue",
hjust = 1, x = 1, face = "italic", size = 10),
left = text_grob("Figure arranged using ggpubr", color = "green", rot = 90),
right = "I'm done, thanks :-)!",
fig.lab = "Figure 1", fig.lab.face = "bold"
)
# Change column/row span of a plot
# We’ll use nested ggarrange() functions to change column/row span of plots.
ggarrange(sp, # First row with scatter plot
ggarrange(bxp, dp, ncol = 2, labels = c("B", "C")), # Second row with box and dot plots
nrow = 2,
labels = "A" # Labels of the scatter plot
)
答案 1 :(得分:1)
您可以使用基本绘图系统,在绘制任何内容之前,可以指定所需的图形数量:
par(mfrow = c(1,2)
这等于1x2
的绘图我不知道您的数据框架是什么样的,但最简单的方法就是这样:
set.seed(123)
df <- data.frame(x = rnorm(100), y = rnorm(100), z = rnorm(100), c = rnorm(100))
plot(df$x, df$y)
plot(df$z, df$c)
答案 2 :(得分:0)
df <- data.frame(A=runif(20), B=runif(20), C=runif(20), D=runif(20))
将您的数据重组为
library(dplyr)
library(tidyr)
df1 <- df %>%
gather(key, value) %>% # convert everything into long format
mutate(grp = rep(1:(ncol(df)/2), each=(nrow(df)*2))) %>% # Each pairs of columns gets unique grouping value
mutate(index = rep(1:nrow(df), ncol(df))) %>% # Each observation in each group gets a unique value
mutate(key = rep(rep(c("x","y"), each=nrow(df)), ncol(df)/2)) %>% # label as x and y
spread(key, value) # convert to wide format again
grp index x y
1 1 1 0.4820801 0.47761962
2 1 2 0.5995658 0.86120948
3 1 3 0.4935413 0.43809711
4 1 4 0.1862176 0.24479728
5 1 5 0.8273733 0.07067905
# etc
使用facet_wrap
按 N grp
library(ggplot2)
ggplot(data=df1, aes(x=x, y=y)) +
geom_point() +
facet_wrap(~grp)
ggplot(data=df1, aes(x=x, y=y, colour=factor(grp))) +
geom_smooth()