Tensorflow' numpy.ndarray'对象没有属性' train'

时间:2017-08-21 07:09:17

标签: numpy tensorflow

我也遇到了同样的问题Training TensorFlow for Predicting a Column in a csv file

  对于i in,()1中的

AttributeError Traceback(最近的最后一次调用)   范围(1000):----> 2 batch_xs,batch_ys = data.train.next_batch(100)3   sess.run(train_step,feed_dict = {x:batch_xs,y_:batch_ys})

     

AttributeError:' numpy.ndarray'对象没有属性' train'

你如何解决它?

from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
import matplotlib

# Import MNIST data
#from tensorflow.examples.tutorials.mnist import input_data
#mnistt = input_data.read_data_sets("/tttmp/data/", one_hot=True)

from numpy import genfromtxt

import csv
import tensorflow as tf
%matplotlib inline

# Read data...
x_input = genfromtxt('Data_Coffee.csv',delimiter=',')
y_input = genfromtxt('Class_Coffee.csv',delimiter=',')

data=genfromtxt('Data_Coffee.csv',delimiter=',')

matSize = np.shape(data)

# Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1


# tf Graph input
x = tf.placeholder(tf.float32, [None, matSize[0]])
y = tf.placeholder(tf.float32, [None, matSize[1]])

#x= genfromtxt('Data_Coffee.csv',delimiter=',')
#y= genfromtxt('Class_Coffee.csv',delimiter=',')


# Initializing the variables
init = tf.global_variables_initializer()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)

    # Training cycle
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(x.train.num_examples/batch_size)

        # Loop over all batches
        for i in range(total_batch):
            batch_x, batch_y = data.train.next_batch(batch_size)
            # Run optimization op (backprop) and cost op (to get loss value)
            _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
            # Compute average loss
            avg_cost += c / total_batch
        # Display logs per epoch step
        if epoch % display_step == 0:
            print("Epoch:", '%04d' % (epoch+1), "cost=", \
                "{:.9f}".format(avg_cost))
    print("Optimization Finished!")

1 个答案:

答案 0 :(得分:1)

我认为你是从MNIST例子中复制这种模式的:data.train.next_batch

在MNIST示例中,数据被读取为具有训练变量的类的对象,而您只是将数据作为NumPy数组读取。