我对map_fn中的变量初始化有疑问。
我试图在张量中的每个单独元素上分别应用一些公路图层,所以我认为map_fn可能是最好的方法。
segment_list = tf.reshape(raw_segment_embedding,[batch_size*seqlen,embed_dim])
segment_embedding = tf.map_fn(lambda x: stack_highways(x, hparams), segment_list)
现在问题是我的fn,即stack_highways,创建变量,并且由于某种原因,tensorflow无法初始化这些变量并给出此错误。
W = tf.Variable(tf.truncated_normal(W_shape, stddev=0.1), name='weight')
ValueError: Initializer for variable body/model/parallel_0/body/map/while/highway_layer0/weight/ is from inside a control-flow construct, such as a loop or conditional. When creating a variable inside a loop or conditional, use a lambda as the initializer.
我现在非常无能为力,基于错误我认为它不是关于范围但我不知道如何使用lambda作为初始化器(我甚至不知道究竟是什么意思)。 以下是stack_highways的实现,非常感谢任何建议。
def weight_bias(W_shape, b_shape, bias_init=0.1):
"""Fully connected highway layer adopted from
https://github.com/fomorians/highway-fcn/blob/master/main.py
"""
W = tf.Variable(tf.truncated_normal(W_shape, stddev=0.1), name='weight')
b = tf.Variable(tf.constant(bias_init, shape=b_shape), name='bias')
return W, b
def highway_layer(x, size, activation, carry_bias=-1.0):
"""Fully connected highway layer adopted from
https://github.com/fomorians/highway-fcn/blob/master/main.py
"""
W, b = weight_bias([size, size], [size])
with tf.name_scope('transform_gate'):
W_T, b_T = weight_bias([size, size], bias_init=carry_bias)
H = activation(tf.matmul(x, W) + b, name='activation')
T = tf.sigmoid(tf.matmul(x, W_T) + b_T, name='transform_gate')
C = tf.sub(1.0, T, name="carry_gate")
y = tf.add(tf.mul(H, T), tf.mul(x, C), name='y') # y = (H * T) + (x * C)
return y
def stack_highways(x, hparams):
"""Create highway networks, this would not create
a padding layer in the bottom and the top, it would
just be layers of highways.
Args:
x: a raw_segment_embedding
hparams: run hyperparameters
Returns:
y: a segment_embedding
"""
highway_size = hparams.highway_size
activation = hparams.highway_activation #tf.nn.relu
carry_bias_init = hparams.highway_carry_bias
prev_y = None
y = None
for i in range(highway_size):
with tf.name_scope("highway_layer{}".format(i)) as scope:
if i == 0: # first, input layer
prev_y = highway_layer(x, highway_size, activation, carry_bias=carry_bias_init)
elif i == highways - 1: # last, output layer
y = highway_layer(prev_y, highway_size, activation, carry_bias=carry_bias_init)
else: # hidden layers
prev_y = highway_layer(prev_y, highway_size, activation, carry_bias=carry_bias_init)
return y
最温暖的问候,
科尔曼
答案 0 :(得分:5)
TensorFlow提供了两种初始化变量的主要方法:
错误消息表明,在while_loop
(内部map_fn
调用)中使用变量时,您需要使用第一种类型的初始值设定项。 (一般来说,lambda初始化器对我来说似乎更健壮。)
此外,tf.get_variable seems to be preferred over tf.Variable when used from within control flow。
因此,我怀疑您可以通过修改weight_bias
功能来解决您的问题:
def weight_bias(W_shape, b_shape, bias_init=0.1):
"""Fully connected highway layer adopted from
https://github.com/fomorians/highway-fcn/blob/master/main.py
"""
W = tf.get_variable("weight", shape=W_shape,
initializer=tf.truncated_normal_initializer(stddev=0.1))
b = tf.get_variable("bias", shape=b_shape,
initializer=tf.constant_inititializer(bias_init))
return W, b
希望有所帮助!