我编写了一个合并排序来测试scala Future [T]类型的异步计算性能。
我有一个4核CPU,所以我期望异步计算比同步计算快大约4倍,因为我使用完全cpu功能(由于子任务的大小相同,停止时间应该很小)。但是,结果显示异步合并排序比正常合并排序慢。
我是不是写了并发或者只是因为Future [T]开销?有人能帮我解释一下吗?
package kai.concurrent
import scala.concurrent.duration.Duration
import scala.concurrent.{Await, Future}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.Random
object MergeSort {
lazy val regressThreadhold = 10000
def mergeSortedList[T](a: Seq[T], b: Seq[T])(implicit ord: Ordering[T]): Seq[T] = {
def loop(a: Seq[T], b: Seq[T], acc: Seq[T]): Seq[T] = {
if (a.isEmpty && b.isEmpty) acc
else if (a.isEmpty) b.reverse ++: acc
else if (b.isEmpty) a.reverse ++: acc
else if (ord.lt(a.head, b.head)) loop(a.tail, b, a.head +: acc)
else loop(a, b.tail, b.head +: acc)
}
loop(a, b, Seq()).reverse
}
def mergeSortAsync0[T](x: Seq[T])(implicit ord: Ordering[T]): Future[Seq[T]] =
if (x.size <= regressThreadhold) Future(mergeSort(x)) else {
val (left, right) = x.splitAt(x.size / 2)
val Seq(leftSorted, rightSorted) = Seq(left, right).map(seq => Future(mergeSortAsync0(seq)).flatten)
leftSorted.zip(rightSorted).map(pair => mergeSortedList(pair._1, pair._2))
}
def mergeSortAsync[T](x: Seq[T])(implicit ord: Ordering[T]): Seq[T] =
Await.result(mergeSortAsync0(x), Duration.Inf)
def mergeSort[T](x: Seq[T])(implicit ord: Ordering[T]): Seq[T] =
if (x.size <= 1) x else {
val (left, right) = x.splitAt(x.size / 2)
val (leftSorted, rightSorted) = (mergeSort(left), mergeSort(right))
mergeSortedList(leftSorted, rightSorted)
}
}
object MergeSortTest extends App {
import kai.util.ProfileUtil.TimeResult
val seq: Vector[Double] = (1 to 1000000).map(i => Random.nextDouble()).toVector
val seqMergeSortAsync = MergeSort.mergeSortAsync(seq) withWallTimePrinted "mergeSortAsync"
val seqMergeSort = MergeSort.mergeSort(seq) withWallTimePrinted "mergeSort"
val seqSort = seq.sorted withWallTimePrinted "sorted"
println(seqSort == seqMergeSort && seqMergeSort == seqMergeSortAsync)
}
输出:
mergeSortAsync elapsed time: 3186 ms
mergeSort elapsed time: 3300 ms
sorted elapsed time: 581 ms
true
答案 0 :(得分:4)
我已经复制了您的测试并通过JMH运行(使用sbt-jmh)。我在测试中使用预定义的 var ctxLine = document.getElementById("line-chart").getContext("2d");
//var myLineChart;
//myLineChart;
if(window.bar != undefined)
window.bar.destroy();
window.bar = new Chart(ctxLine, {});
作为底层执行上下文。
结果:
scala.concurrent.ExecutionContext.Implicits.global
您可以在此处看到,运行并行版本比顺序版本快约x1.5,而Scala排序比顺序合并排序快x6倍。
需要记住的是,在进行这些微基准测试时,需要考虑很多因素。通常最好让JMH处理JVM运行时为您提供的细微之处。
plugins.sbt:
[info] Benchmark Mode Cnt Score Error Units
[info] MergeSortTest.benchMergeSortAsync avgt 25 1.534 +–’ 0.212 s/op
[info] MergeSortTest.benchMergeSortSync avgt 25 2.325 +–’ 0.437 s/op
[info] MergeSortTest.benchScalaSort avgt 25 0.382 +–’ 0.006 s/op
build.sbt:
addSbtPlugin("pl.project13.scala" % "sbt-jmh" % "0.2.27")
测试代码:
enablePlugins(JmhPlugin)