我收集的名词短语大约有10,000个单词。我想检查这些NP集合的每个新输入文本数据,并提取包含任何这些NP的句子。我不想为每个单词运行循环,因为它使我的代码死得很慢。我正在使用Java和Stanford CoreNLP。
答案 0 :(得分:0)
快速简便的方法是使用RegexNER识别字典中所有内容的所有示例,然后检查句子中的非“O”NER标记。
package edu.stanford.nlp.examples;
import edu.stanford.nlp.ling.*;
import edu.stanford.nlp.pipeline.*;
import edu.stanford.nlp.util.*;
import java.util.*;
import java.util.stream.Collectors;
public class FindSentencesWithPhrase {
public static boolean checkForNamedEntity(CoreMap sentence) {
for (CoreLabel token : sentence.get(CoreAnnotations.TokensAnnotation.class)) {
if (token.ner() != null && !token.ner().equals("O")) {
return true;
}
}
return false;
}
public static void main(String[] args) {
Properties props = new Properties();
props.setProperty("annotators", "tokenize,ssplit,pos,lemma,regexner");
props.setProperty("regexner.mapping", "phrases.rules");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
String exampleText = "This sentence contains the phrase \"ice cream\"." +
"This sentence is not of interest. This sentences contains pizza.";
Annotation ann = new Annotation(exampleText);
pipeline.annotate(ann);
for (CoreMap sentence : ann.get(CoreAnnotations.SentencesAnnotation.class)) {
if (checkForNamedEntity(sentence)) {
System.out.println("---");
System.out.println(sentence.get(CoreAnnotations.TokensAnnotation.class).
stream().map(token -> token.word()).collect(Collectors.joining(" ")));
}
}
}
}
文件“phrase.rules”应如下所示:
ice cream PHRASE_OF_INTEREST MISC 1
pizza PHRASE_OF_INTEREST MISC 1