我正在尝试在Google Cloud中运行机器学习Jon,但它总是告诉我没有足够的加速器可用,我尝试使用参数----scale-tier=BASIC | BASIC_GPU | STANDARD_1 | PREMIUM_1
。并且是相同的结果。
这是命令和结果:
gcloud ml-engine jobs submit training object_detection_`date +%s` --job-dir=gs://${TRAIN_DIR} --packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz --module-name object_detection.train --region us-central1 --config ${PATH_TO_LOCAL_YAML_FILE} -- --train_dir=gs://${TRAIN_DIR} --pipeline_config_path=gs://${PIPELINE_CONFIG_PATH}
ERROR: (gcloud.ml-engine.jobs.submit.training) RESOURCE_EXHAUSTED: Field: scale_tier Error: Insufficient accelerators are available in region us-central1 to schedule the job which requests 6 K80 accelerators. Please wait and try again or else try submitting your job to a different region.
- '@type': type.googleapis.com/google.rpc.BadRequest
fieldViolations:
- description: Insufficient accelerators are available in region us-central1 to
schedule the job which requests 6 K80 accelerators. Please wait and try again
or else try submitting your job to a different region.
field: scale_tier
答案 0 :(得分:8)
us-central1
对GPU的需求量很大。我建议在us-east1
中尽可能在RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)/(.*) mobile.php?id=$2 [L]
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*) grid.php?view=$1 [L]
开始工作,直到有更多GPU可用。