我正在构建一个网络应用程序来帮助学生学习数学。
该应用需要显示来自LaTex文件的数学内容。 这些Latex文件渲染(精美)为pdf,我可以通过pdf2svg将其干净地转换为svg。
(svg或png或任何图像格式)图像看起来像这样:
_______________________________________
| |
| 1. Word1 word2 word3 word4 |
| a. Word5 word6 word7 |
| |
| ///////////Graph1/////////// |
| |
| b. Word8 word9 word10 |
| |
| 2. Word11 word12 word13 word14 |
| |
|_______________________________________|
真实的例子:
Web应用程序的目的是操作并向其添加内容,从而产生如下内容:
_______________________________________
| |
| 1. Word1 word2 | <-- New line break
|_______________________________________|
| |
| -> NewContent1 |
|_______________________________________|
| |
| word3 word4 |
|_______________________________________|
| |
| -> NewContent2 |
|_______________________________________|
| |
| a. Word5 word6 word7 |
|_______________________________________|
| |
| ///////////Graph1/////////// |
|_______________________________________|
| |
| -> NewContent3 |
|_______________________________________|
| |
| b. Word8 word9 word10 |
|_______________________________________|
| |
| 2. Word11 word12 word13 word14 |
|_______________________________________|
示例:
单个大图像无法让我灵活地进行这种操作。
但是如果将图像文件分解为包含单个单词和单个图形的较小文件,我可以进行这些操作。
我认为我需要做的是检测图像中的空白,并将图像切割成多个子图像,看起来像这样:
_______________________________________
| | | | |
| 1. Word1 | word2 | word3 | word4 |
|__________|_______|_______|____________|
| | | |
| a. Word5 | word6 | word7 |
|_____________|_______|_________________|
| |
| ///////////Graph1/////////// |
|_______________________________________|
| | | |
| b. Word8 | word9 | word10 |
|_____________|_______|_________________|
| | | | |
| 2. Word11 | word12 | word13 | word14 |
|___________|________|________|_________|
我正在寻找一种方法来做到这一点。 你认为怎么走?
感谢您的帮助!
答案 0 :(得分:5)
我会使用水平和垂直投影来首先将图像分割成线条,然后将每条线条分割成更小的切片(例如单词)。
首先将图像转换为灰度,然后将其反转,使间隙包含零,并且任何文本/图形都不为零。
img = cv2.imread('article.png', cv2.IMREAD_COLOR)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray_inverted = 255 - img_gray
使用cv2.reduce
计算水平投影 - 每行的平均强度,并将其展平为线性阵列。
row_means = cv2.reduce(img_gray_inverted, 1, cv2.REDUCE_AVG, dtype=cv2.CV_32F).flatten()
现在找到所有连续间隙的行范围。您可以使用this answer中提供的功能。
row_gaps = zero_runs(row_means)
最后计算间隙的中点,我们将用它来剪切图像。
row_cutpoints = (row_gaps[:,0] + row_gaps[:,1] - 1) / 2
你最终会出现类似这种情况(间隙为粉红色,切点为红色):
下一步是处理每个已识别的行。
bounding_boxes = []
for n,(start,end) in enumerate(zip(row_cutpoints, row_cutpoints[1:])):
line = img[start:end]
line_gray_inverted = img_gray_inverted[start:end]
计算垂直投影(每列的平均强度),找出间隙和切割点。另外,计算间隙大小,以便过滤掉各个字母之间的小间隙。
column_means = cv2.reduce(line_gray_inverted, 0, cv2.REDUCE_AVG, dtype=cv2.CV_32F).flatten()
column_gaps = zero_runs(column_means)
column_gap_sizes = column_gaps[:,1] - column_gaps[:,0]
column_cutpoints = (column_gaps[:,0] + column_gaps[:,1] - 1) / 2
过滤分割点。
filtered_cutpoints = column_cutpoints[column_gap_sizes > 5]
并为每个细分创建一个边界框列表。
for xstart,xend in zip(filtered_cutpoints, filtered_cutpoints[1:]):
bounding_boxes.append(((xstart, start), (xend, end)))
现在你最终得到这样的东西(再次是粉红色,切点红色):
现在你可以剪切图像了。我只是想象一下找到的边界框:
完整的脚本:
import cv2
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
def plot_horizontal_projection(file_name, img, projection):
fig = plt.figure(1, figsize=(12,16))
gs = gridspec.GridSpec(1, 2, width_ratios=[3,1])
ax = plt.subplot(gs[0])
im = ax.imshow(img, interpolation='nearest', aspect='auto')
ax.grid(which='major', alpha=0.5)
ax = plt.subplot(gs[1])
ax.plot(projection, np.arange(img.shape[0]), 'm')
ax.grid(which='major', alpha=0.5)
plt.xlim([0.0, 255.0])
plt.ylim([-0.5, img.shape[0] - 0.5])
ax.invert_yaxis()
fig.suptitle("FOO", fontsize=16)
gs.tight_layout(fig, rect=[0, 0.03, 1, 0.97])
fig.set_dpi(200)
fig.savefig(file_name, bbox_inches='tight', dpi=fig.dpi)
plt.clf()
def plot_vertical_projection(file_name, img, projection):
fig = plt.figure(2, figsize=(12, 4))
gs = gridspec.GridSpec(2, 1, height_ratios=[1,5])
ax = plt.subplot(gs[0])
im = ax.imshow(img, interpolation='nearest', aspect='auto')
ax.grid(which='major', alpha=0.5)
ax = plt.subplot(gs[1])
ax.plot(np.arange(img.shape[1]), projection, 'm')
ax.grid(which='major', alpha=0.5)
plt.xlim([-0.5, img.shape[1] - 0.5])
plt.ylim([0.0, 255.0])
fig.suptitle("FOO", fontsize=16)
gs.tight_layout(fig, rect=[0, 0.03, 1, 0.97])
fig.set_dpi(200)
fig.savefig(file_name, bbox_inches='tight', dpi=fig.dpi)
plt.clf()
def visualize_hp(file_name, img, row_means, row_cutpoints):
row_highlight = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
row_highlight[row_means == 0, :, :] = [255,191,191]
row_highlight[row_cutpoints, :, :] = [255,0,0]
plot_horizontal_projection(file_name, row_highlight, row_means)
def visualize_vp(file_name, img, column_means, column_cutpoints):
col_highlight = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
col_highlight[:, column_means == 0, :] = [255,191,191]
col_highlight[:, column_cutpoints, :] = [255,0,0]
plot_vertical_projection(file_name, col_highlight, column_means)
# From https://stackoverflow.com/a/24892274/3962537
def zero_runs(a):
# Create an array that is 1 where a is 0, and pad each end with an extra 0.
iszero = np.concatenate(([0], np.equal(a, 0).view(np.int8), [0]))
absdiff = np.abs(np.diff(iszero))
# Runs start and end where absdiff is 1.
ranges = np.where(absdiff == 1)[0].reshape(-1, 2)
return ranges
img = cv2.imread('article.png', cv2.IMREAD_COLOR)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray_inverted = 255 - img_gray
row_means = cv2.reduce(img_gray_inverted, 1, cv2.REDUCE_AVG, dtype=cv2.CV_32F).flatten()
row_gaps = zero_runs(row_means)
row_cutpoints = (row_gaps[:,0] + row_gaps[:,1] - 1) / 2
visualize_hp("article_hp.png", img, row_means, row_cutpoints)
bounding_boxes = []
for n,(start,end) in enumerate(zip(row_cutpoints, row_cutpoints[1:])):
line = img[start:end]
line_gray_inverted = img_gray_inverted[start:end]
column_means = cv2.reduce(line_gray_inverted, 0, cv2.REDUCE_AVG, dtype=cv2.CV_32F).flatten()
column_gaps = zero_runs(column_means)
column_gap_sizes = column_gaps[:,1] - column_gaps[:,0]
column_cutpoints = (column_gaps[:,0] + column_gaps[:,1] - 1) / 2
filtered_cutpoints = column_cutpoints[column_gap_sizes > 5]
for xstart,xend in zip(filtered_cutpoints, filtered_cutpoints[1:]):
bounding_boxes.append(((xstart, start), (xend, end)))
visualize_vp("article_vp_%02d.png" % n, line, column_means, filtered_cutpoints)
result = img.copy()
for bounding_box in bounding_boxes:
cv2.rectangle(result, bounding_box[0], bounding_box[1], (255,0,0), 2)
cv2.imwrite("article_boxes.png", result)
答案 1 :(得分:1)