我正在尝试在Pytorch中创建一个基本的二元分类器,用于分类我的玩家是在游戏Pong中的右侧还是左侧进行游戏。输入是1x42x42图像,标签是我的播放器侧(右= 1或左= 2)。代码:
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
net = Net(42 * 42, 100, 2)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer_net = torch.optim.Adam(net.parameters(), 0.001)
net.train()
while True:
state = get_game_img()
state = torch.from_numpy(state)
# right = 1, left = 2
current_side = get_player_side()
target = torch.LongTensor(current_side)
x = Variable(state.view(-1, 42 * 42))
y = Variable(target)
optimizer_net.zero_grad()
y_pred = net(x)
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
我得到的错误:
File "train.py", line 109, in train
loss = criterion(y_pred, y)
File "/home/shani/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 206, in __call__
result = self.forward(*input, **kwargs)
File "/home/shani/anaconda2/lib/python2.7/site-packages/torch/nn/modules/loss.py", line 321, in forward
self.weight, self.size_average)
File "/home/shani/anaconda2/lib/python2.7/site-packages/torch/nn/functional.py", line 533, in cross_entropy
return nll_loss(log_softmax(input), target, weight, size_average)
File "/home/shani/anaconda2/lib/python2.7/site-packages/torch/nn/functional.py", line 501, in nll_loss
return f(input, target)
File "/home/shani/anaconda2/lib/python2.7/site-packages/torch/nn/_functions/thnn/auto.py", line 41, in forward
output, *self.additional_args)
RuntimeError: Assertion `cur_target >= 0 && cur_target < n_classes' failed. at /py/conda-bld/pytorch_1493676237139/work/torch/lib/THNN/generic/ClassNLLCriterion.c:57
答案 0 :(得分:5)
对于大多数deeplearning库,目标(或标签)应从0开始。
这意味着您的目标应该在[0,n]范围内,具有n级。
答案 1 :(得分:0)
看起来PyTorch希望得到零基标签(在你的情况下是0/1),你可能用一个基础的标签(1/2)来喂它
答案 2 :(得分:0)
我的程序中存在相同的错误,我只是意识到问题出在我的神经网络中的输出节点数上
在我的程序中,模型的输出节点数不等于数据集中的标签数
输出数量为1,目标标签数量为10。然后我将输出数量更改为10,没有错误