python中的神经网络只学习每个数据集的1个输入/输出对?

时间:2017-08-18 17:03:31

标签: python neural-network artificial-intelligence backpropagation

我最近编写了用于在python中生成和训练人工神经网络的代码(使用反向传播)。这一切都很有效,但是这个问题困扰了我好几天了,我似乎无法找到原因:

如果集合仅包含1个输入/输出对,则我生成的网络仅减少数据集上的错误。例如。对于2个输入神经元,我的输入是[[1,1]],为简单起见,[[1,1]]作为输出。这很好用,错误减少了。但是如果我选择[[1,1],[0,0]]作为输入,则无论我让它工作多久,错误都会交替出现,或者有时只会出现2次。这是我的代码:

import numpy as np
from graphics import *
import math

class Neuron():

    def __init__(self,input=0,output=0,activation_func_key="logistic",bias=False,inp=False):
        self.b = bias
        self.input = input + self.b
        self.output = output
        self.key = activation_func_key
        self.inp = inp

    def add_to_input(self,input_=0):
        self.input += input_

    def add_to_input(self,input_=0):
        self.input += float(input_)

    def get_output(self):
        if self.b:
            return 1
        if self.inp:
            return self.input
        if self.key is "relu":
            return np.maximum((self.input),0)
        if self.key is "tanh":
            return np.tanh(self.input)
        if self.key is "softplus":
            return np.log(1+np.e**(self.input))
        if self.key is "logistic":
            return 1/(1+np.e**-(self.input))

    def reset(self):
        self.input = 0
        self.ouput = 0

class Network():

    def __init__(self,weight_matrix,input_neuron_num,hidden_neuron_nums,ouput_neuron_num,activation_f="relu"):
        self.weight_matrix = weight_matrix
        self.neurons = [Neuron(activation_func_key=activation_f) for _ in range(weight_matrix[0].__len__())]

        back_layers = 0
        val = input_neuron_num
        counter = 0

        for i in range(weight_matrix[0].__len__()):
            bias = False
            inp = False

            if i is val:
                bias = True
                if counter < hidden_neuron_nums.__len__():
                    val += hidden_neuron_nums[counter]+1
                counter += 1

            if i < input_neuron_num:
                inp = True

            self.neurons[i] = Neuron(activation_func_key=activation_f,inp=inp,bias=bias)

        self.input_neuron_num = input_neuron_num
        self.hidden_neuron_nums = hidden_neuron_nums
        self.output_neuron_num = ouput_neuron_num

    def propagate_forward(self,inputv,output_len):
        for i in range(self.neurons.__len__()):
            if i < self.input_neuron_num:
                self.neurons[i].add_to_input(inputv[i])
            else:
                spalte = self.weight_matrix[:][i]

                for j in range(spalte.__len__()):
                    #if i > j: #nur obere dreiecksmatrix
                    self.neurons[i].add_to_input(self.weight_matrix[j][i] * self.neurons[j].get_output())
        output = []
        for i in range(output_len):
            output.append(self.neurons[self.weight_matrix[0].__len__()-i-1].get_output())

        output.reverse()

        return output

    def reset(self):
        for n in self.neurons:
            n.reset()

def make_net(inp,hidden,out,activation_f="logistic"):

    hsum = 0
    for i in range(hidden.__len__()):
        hsum += hidden[i]+1

    sum = inp + 1 + hsum + out

    weights = [[0 for _ in range(sum)] for _ in range(sum)]

    neurons_till_this_layer = 0

    for i in range(inp+1):
        for j in range(hidden[0]):
            weights[i][inp+j+1] = np.random.uniform(-1,1)

    neurons_till_this_layer += inp+1

    for i in range(hidden.__len__()-1):
        for n in range(hidden[i]+1):
            for m in range(hidden[i+1]):
                weights[n+neurons_till_this_layer][m+neurons_till_this_layer+hidden[i]+1] = np.random.uniform(-1,1)
        neurons_till_this_layer += hidden[i]+1

    for i in range(hidden[hidden.__len__()-1]+1):
        for j in range(out):
            weights[i+neurons_till_this_layer][j+neurons_till_this_layer+hidden[hidden.__len__()-1]+1] = np.random.uniform(-1,1)

    net = Network(weights,inp,hidden,out,activation_f=activation_f)

    return net

def backpropagation(net,inputs,outputs,learning_rate=0.001,epsilon=0.1,draw=False,win=0):

    if draw:
        win = 0
        if win is not 0:
            win = win
        else:
            win = draw_window(net)

    if inputs[0][:].__len__() is not net.input_neuron_num:
        print("Error: Input length does not match! No learning could be done!")
        return net
    if outputs[0][:].__len__() is not net.output_neuron_num:
        print("Error: Output length does not match! No learning could be done!")
        return net

    hsum = 0
    for i in range(net.hidden_neuron_nums.__len__()):
        hsum += net.hidden_neuron_nums[i]+1

    outer_delta_w_matrix = [[0 for _ in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num)] for _ in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num)]

    for N in range(inputs.__len__()):

        net_output = net.propagate_forward(inputs[N],outputs[0].__len__())

        delta_w_matrix = [[0 for _ in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num)] for _ in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num)]
        delta_j_list = [float(0) for _ in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num)]

        for i in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num):
            j = net.input_neuron_num + 1 + hsum + net.output_neuron_num - i - 1
            derivate = "error"
            if net.neurons[j].key is "relu":
                derivate = 0 if net.neurons[j].input <= 0 else 1
            if net.neurons[j].key is "tanh":
                derivate = (1 / (np.cosh(net.neurons[j].input) * np.cosh(net.neurons[j].input)))
            if net.neurons[j].key is "softplus":
                derivate = 1 / (1 + np.e ** -net.neurons[j].input)
            if net.neurons[j].key is "logistic":
                #print(" input: %f" % net.neurons[j].input)
                derivate = (np.exp(net.neurons[j].input)) / (((np.exp(net.neurons[j].input)) + 1) ** 2)
                #derivate = net.neurons[j].output * (1 - net.neurons[i].get_output())
            if i < net.output_neuron_num:
                delta_j_list[j] = derivate * (net.neurons[j].get_output() - float(outputs[N][net.output_neuron_num-i-1]))
            else:
                prev_delta_sum = 0
                for x in range(net.weight_matrix[j][:].__len__()):
                    prev_delta_sum += (delta_j_list[j-x] * net.weight_matrix[j][x])
                #print(net.neurons[j].input)
                delta_j_list[j] = derivate * prev_delta_sum

        for i in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num):
            for j in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num):
                if net.weight_matrix[i][j]:
                    delta_w_matrix[i][j] = -learning_rate * delta_j_list[j] * net.neurons[i].get_output()

        for i in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num):
            for j in range(net.input_neuron_num + 1 + hsum + net.output_neuron_num):
                outer_delta_w_matrix[i][j] += (delta_w_matrix[i][j] / (inputs.__len__()))

        #print_matrix(net.weight_matrix)
        #print()

        #print("Completed cycle")

        net.reset()

    for i in range(net.input_neuron_num + hsum + net.output_neuron_num):
        for j in range(net.input_neuron_num + hsum + net.output_neuron_num):
            if net.weight_matrix[i][j]:
                net.weight_matrix[i][j] = net.weight_matrix[i][j] + outer_delta_w_matrix[i][j]

    if draw:
        draw_net(net, win)

    return net

def print_matrix(matrix):

    a = matrix[0][:]
    b = matrix[:][0]

    for i in range(a.__len__()):
        print()
        for j in range(b.__len__()):
            sys.stdout.write("% 1.7f " % matrix[i][j])

    print()

def get_dataset_binary(dataset_length=1000,max=4):

    rdm_nums = [np.random.randint(0,2**max) for _ in range(dataset_length)]

    bin_nums = [0 for _ in range(rdm_nums.__len__())]

    length = max

    for i in range(rdm_nums.__len__()):
        bin_nums[i] = "{0:b}".format(rdm_nums[i])
        while bin_nums[i].__len__() < length:
            bin_nums[i] = "0" + bin_nums[i]

    r_value = [0 for _ in range(dataset_length)]

    for i in range(dataset_length):
        r_value[i] = list(bin_nums[i])

    return r_value

def draw_window(net,autoflush=False):
    width = 0
    for i in range(net.hidden_neuron_nums.__len__()):
        if net.hidden_neuron_nums[i] > width:
            width = net.hidden_neuron_nums[i]

    if net.input_neuron_num > width:
        width = net.input_neuron_num
    if net.output_neuron_num > width:
        width = net.output_neuron_num

    scale_factor = 0.7

    counter = 0
    r = 50*scale_factor
    v_buf = 100*scale_factor
    h_buf = 50*scale_factor
    d1 = 20*scale_factor
    d2 = 12*scale_factor

    return GraphWin("Netzwerk", (2*h_buf)+(width*2*r)+(width*h_buf)-h_buf, 2 * v_buf + 2*r+v_buf + net.hidden_neuron_nums.__len__()*2*r + net.hidden_neuron_nums.__len__()*v_buf-v_buf + 2*r+v_buf, autoflush=autoflush)

def draw_net(net,win=0):

    width = 0
    for i in range(net.hidden_neuron_nums.__len__()):
        if net.hidden_neuron_nums[i] > width:
            width = net.hidden_neuron_nums[i]+1

    if net.input_neuron_num > width:
        width = net.input_neuron_num+1
    if net.output_neuron_num > width:
        width = net.output_neuron_num

    scale_factor = 0.7

    counter = 0
    r = 50*scale_factor
    v_buf = 100*scale_factor
    h_buf = 50*scale_factor
    d1 = 20*scale_factor
    d2 = 12*scale_factor

    if win is 0:
        win = GraphWin("Netzwerk", (2*h_buf)+(width*2*r)+(width*h_buf)-h_buf, 2 * v_buf + 2*r+v_buf + net.hidden_neuron_nums.__len__()*2*r + net.hidden_neuron_nums.__len__()*v_buf-v_buf + 2*r+v_buf)

    for i in range(net.weight_matrix.__len__()):
        for j in range(net.weight_matrix.__len__()):
            if net.weight_matrix[i][j] is not 0:
                from_pos = get_neuron_pos(net,i,r,v_buf,h_buf,width)
                to_pos = get_neuron_pos(net,j,r,v_buf,h_buf,width)

                thickness = np.abs(net.weight_matrix[i][j]) * 10

                weight = Polygon([Point(from_pos.x-thickness,from_pos.y), Point(from_pos.x+thickness,from_pos.y),Point(to_pos.x+thickness,to_pos.y), Point(to_pos.x-thickness,to_pos.y)])
                if net.weight_matrix[i][j] > 0:
                    weight.setFill("firebrick4")
                else:
                    weight.setFill("lightskyblue")

                label = Text(Point((from_pos.x+to_pos.x)/2, (from_pos.y+to_pos.y)/2), "%0.5f" % net.weight_matrix[i][j])
                label.setSize(np.maximum(int(10*scale_factor),5))

                weight.draw(win)
                label.draw(win)

    hidden_neuron_num = 0

    for i in range(net.hidden_neuron_nums.__len__()):
        hidden_neuron_num += net.hidden_neuron_nums[i]+1

    for i in range(net.input_neuron_num+1):
        inp_neuron = Circle(Point( (win.width - ((net.input_neuron_num+1) * 2 * r + (net.input_neuron_num+1) * h_buf - h_buf))/2 + i*(2*r+h_buf) + r, v_buf+r),r)
        inp_neuron.setFill("springgreen3")
        if i is net.input_neuron_num:
            inp_neuron.setFill("snow")
        name = Text(Point((win.width - ((net.input_neuron_num+1) * 2 * r + (net.input_neuron_num+1) * h_buf - h_buf))/2 + i*(2*r+h_buf) + r, v_buf+r-d1), "%s" % ("Neuron(in) " + str(counter+1)))
        if i is net.input_neuron_num:
            name.setText("%s" % ("Neuron(bias) " + str(counter+1)))
        label = Text(Point((win.width - ((net.input_neuron_num+1) * 2 * r + (net.input_neuron_num+1) * h_buf - h_buf))/2 + i*(2*r+h_buf) + r, v_buf+r+d2), "Output:\n%1.6f" % float(net.neurons[counter].get_output()))

        name.setSize(np.maximum(int(10*scale_factor),5))
        label.setSize(np.maximum(int(10*scale_factor),5))

        inp_neuron.draw(win)
        name.draw(win)
        label.draw(win)
        counter +=1

    for i in range(net.hidden_neuron_nums.__len__()):
        for j in range(net.hidden_neuron_nums[i]+1):
            hidden_neuron = Circle(Point((win.width-((net.hidden_neuron_nums[i]+1)*2*r+(net.hidden_neuron_nums[i]+1)*h_buf-h_buf))/2+j*(2*r+h_buf)+r,(3*r+2*v_buf)+i*(2*r+v_buf)),r)
            hidden_neuron.setFill("lavender")
            if j is net.hidden_neuron_nums[i]:
                hidden_neuron.setFill("snow")
            name = Text(Point((win.width-((net.hidden_neuron_nums[i]+1)*2*r+(net.hidden_neuron_nums[i]+1)*h_buf-h_buf))/2+j*(2*r+h_buf)+r, (3*r+2*v_buf)+i*(2*r+v_buf)-d1), "%s" % ("Neuron " + str(counter+1)))
            if j is net.hidden_neuron_nums[i]:
                name.setText("%s" % ("Neuron(bias) " + str(counter+1)))
            label = Text(Point((win.width-((net.hidden_neuron_nums[i]+1)*2*r+(net.hidden_neuron_nums[i]+1)*h_buf-h_buf))/2+j*(2*r+h_buf)+r, (3*r+2*v_buf)+i*(2*r+v_buf)+d2), "Output:\n%1.6f" % net.neurons[counter].get_output())

            name.setSize(np.maximum(int(10*scale_factor),5))
            label.setSize(np.maximum(int(10*scale_factor),5))

            hidden_neuron.draw(win)
            name.draw(win)
            label.draw(win)
            counter += 1

    for i in range(net.output_neuron_num):
        out_neuron = Circle(Point((win.width-(net.output_neuron_num*2*r+net.output_neuron_num*h_buf-h_buf))/2+i*(2*r+h_buf)+r, net.hidden_neuron_nums.__len__()*2*r + 2*r + net.hidden_neuron_nums.__len__()*v_buf + 2* v_buf + r),r)
        out_neuron.setFill("darkgoldenrod3")
        name = Text(Point((win.width-(net.output_neuron_num*2*r+net.output_neuron_num*h_buf-h_buf))/2+i*(2*r+h_buf)+r, net.hidden_neuron_nums.__len__()*2*r + 2*r + net.hidden_neuron_nums.__len__()*v_buf + 2* v_buf + r - d1), "%s" % ("Neuron(out) " + str(counter+1)))
        label = Text(Point((win.width-(net.output_neuron_num*2*r+net.output_neuron_num*h_buf-h_buf))/2+i*(2*r+h_buf)+r, net.hidden_neuron_nums.__len__()*2*r + 2*r + net.hidden_neuron_nums.__len__()*v_buf + 2* v_buf + r + d2), "Output:\n%1.6f" % net.neurons[counter].get_output())

        name.setSize(np.maximum(int(10*scale_factor),5))
        label.setSize(np.maximum(int(10*scale_factor),5))

        out_neuron.draw(win)
        name.draw(win)
        label.draw(win)
        counter += 1

    win.update()

    win.wait_window()

def get_neuron_pos(net, n, r, v_buf, h_buf, width):

    if n < net.input_neuron_num+1:

        return Point(((2*h_buf)+(width*2*r)+(width*h_buf)-h_buf - ((net.input_neuron_num+1) * 2 * r + (net.input_neuron_num+1) * h_buf - h_buf)) / 2 + n * (2 * r + h_buf) + r, v_buf + r)

    current = net.input_neuron_num+1

    for h in range(net.hidden_neuron_nums.__len__()):
        current += (net.hidden_neuron_nums[h]+1)
        if n < current:
            return Point(((2*h_buf)+(width*2*r)+(width*h_buf)-h_buf-((net.hidden_neuron_nums[h]+1)*2*r+(net.hidden_neuron_nums[h]+1)*h_buf-h_buf))/2+(n-(current-net.hidden_neuron_nums[h]-1))*(2*r+h_buf)+r,(3*r+2*v_buf)+h*(2*r+v_buf))

    if n - current  < net.output_neuron_num:
        return Point(((2*h_buf)+(width*2*r)+(width*h_buf)-h_buf-((net.output_neuron_num)*2*r+(net.output_neuron_num)*h_buf-h_buf))/2+(n-current)*(2*r+h_buf)+r, net.hidden_neuron_nums.__len__()*2*r + 2*r + net.hidden_neuron_nums.__len__()*v_buf + 2* v_buf + r)

    return -1

def backpropagation_(net,inputs,outputs,learning_rate=0.01,epsilon=0.1):

    endlich_fertig = False

    while not endlich_fertig:

        net = backpropagation(net,inputs,outputs,learning_rate,epsilon)

        endlich_fertig = True

        error = 0

        for i in range(inputs.__len__()):

            output = net.propagate_forward(inputs[i], outputs[0][:].__len__())

            for j in range(output.__len__()):
                error += np.abs(output[j] - float(outputs[i][j]))

            if error > epsilon:
                endlich_fertig = False

        print("Error: %f" % error)

    return net

net = make_net(2,[3,2],2)

print_matrix(net.weight_matrix)

inputs = [[1,1],[0,0]]
outputs = inputs

draw_net(net)

trained_net = backpropagation_(net,inputs,outputs)

draw_net(trained_net)

编辑:输入完整代码,以便您可以轻松地在本地重现行为

0 个答案:

没有答案