我在Apache Spark 2.2中使用最新的结构化流,并得到以下异常:
org.apache.spark.sql.AnalysisException:不完整输出模式 流媒体上没有流聚合时支持 DataFrames /数据集;;
为什么完整输出模式需要流聚合?如果Spark允许在流式查询中没有聚合的完整输出模式,会发生什么?
scala> spark.version
res0: String = 2.2.0
import org.apache.spark.sql.execution.streaming.MemoryStream
import org.apache.spark.sql.SQLContext
implicit val sqlContext: SQLContext = spark.sqlContext
val source = MemoryStream[(Int, Int)]
val ids = source.toDS.toDF("time", "id").
withColumn("time", $"time" cast "timestamp"). // <-- convert time column from Int to Timestamp
dropDuplicates("id").
withColumn("time", $"time" cast "long") // <-- convert time column back from Timestamp to Int
import org.apache.spark.sql.streaming.{OutputMode, Trigger}
import scala.concurrent.duration._
scala> val q = ids.
| writeStream.
| format("memory").
| queryName("dups").
| outputMode(OutputMode.Complete). // <-- memory sink supports checkpointing for Complete output mode only
| trigger(Trigger.ProcessingTime(30.seconds)).
| option("checkpointLocation", "checkpoint-dir"). // <-- use checkpointing to save state between restarts
| start
org.apache.spark.sql.AnalysisException: Complete output mode not supported when there are no streaming aggregations on streaming DataFrames/Datasets;;
Project [cast(time#10 as bigint) AS time#15L, id#6]
+- Deduplicate [id#6], true
+- Project [cast(time#5 as timestamp) AS time#10, id#6]
+- Project [_1#2 AS time#5, _2#3 AS id#6]
+- StreamingExecutionRelation MemoryStream[_1#2,_2#3], [_1#2, _2#3]
at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.org$apache$spark$sql$catalyst$analysis$UnsupportedOperationChecker$$throwError(UnsupportedOperationChecker.scala:297)
at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.checkForStreaming(UnsupportedOperationChecker.scala:115)
at org.apache.spark.sql.streaming.StreamingQueryManager.createQuery(StreamingQueryManager.scala:232)
at org.apache.spark.sql.streaming.StreamingQueryManager.startQuery(StreamingQueryManager.scala:278)
at org.apache.spark.sql.streaming.DataStreamWriter.start(DataStreamWriter.scala:247)
... 57 elided
答案 0 :(得分:4)
来自Structured Streaming Programming Guide - 其他查询(不包括汇总, { this.state.err !='' &&
<span className="text text-danger"><strong>No Value selected!
</strong></span>
}
和mapGroupsWithState
):
不支持完整模式,因为在结果表中保留所有未聚合数据是不可行的。
回答这个问题:
如果Spark允许在流式查询中没有聚合的完整输出模式,会发生什么?
可能是OOM。
令人费解的部分是为什么flatMapGroupsWithState
未被标记为聚合。
答案 1 :(得分:1)
我认为问题在于输出模式。代替使用OutputMode.Complete,使用OutputMode.Append如下所示。
scala> val q = ids
.writeStream
.format("memory")
.queryName("dups")
.outputMode(OutputMode.Append)
.trigger(Trigger.ProcessingTime(30.seconds))
.option("checkpointLocation", "checkpoint-dir")
.start