我可能是pandas DataFrame的基本问题。在以下代码段中,我插入了一个计算列' CAPACITY_CHECK'然后我尝试根据它分组数据。但是我一直有以下错误:TypeError:unhashable type:' numpy.ndarray'
TEMP['CAPACITY_CHECK'] = TEMP[['ADD_CAPACITY_ST', 'CAPACITY_ST', 'VOLUME_PER_SUPPLIER']].apply(lambda X: numpy.where(X[0]+X[1]<X[2],'Non OK', 'OK'), axis=1)
TEMP.groupby('CAPACITY_CHECK')['ID'].count()
&#13;
由于我没有尝试修改任何不可变对象,而新列的类型是&#34; Series&#34;,我不明白为什么我会遇到错误。
提前致谢
答案 0 :(得分:2)
我认为您需要删除申请并仅使用numpy.where
:
mask = (TEMP['ADD_CAPACITY_ST'] + TEMP['CAPACITY_ST']) < TEMP['VOLUME_PER_SUPPLIER']
TEMP['CAPACITY_CHECK'] = numpy.where(mask,'Non OK', 'OK')
<强>示例强>:
TEMP = pd.DataFrame({'ADD_CAPACITY_ST':[10,20,30],
'CAPACITY_ST':[10,20,30],
'VOLUME_PER_SUPPLIER':[40,20,100]})
mask = (TEMP['ADD_CAPACITY_ST'] + TEMP['CAPACITY_ST']) < TEMP['VOLUME_PER_SUPPLIER']
TEMP['CAPACITY_CHECK'] = numpy.where(mask,'Non OK', 'OK')
print (TEMP)
ADD_CAPACITY_ST CAPACITY_ST VOLUME_PER_SUPPLIER CAPACITY_CHECK
0 10 10 40 Non OK
1 20 20 20 OK
2 30 30 100 Non OK
然后使用GroupBy.size
或GroupBy.count
:
TEMP.groupby('CAPACITY_CHECK')['ID'].size()
TEMP.groupby('CAPACITY_CHECK')['ID'].count()