我无法将字符串转换为Java中的日期,我无法弄明白。
String sdate1 = "01/04/2016";
SimpleDateFormat dateformat = new SimpleDateFormat("dd/MM/yyyy");
Date date1 = dateformat.parse(sdate1);
最后一行会导致错误,这会强制我用try / catch包围它。
使用try / catch对此进行处理会导致date1在以后尝试打印变量时导致错误。错误状态'本地变量date1可能尚未初始化'。
Date date1;
try {
date1 = dateformat.parse(sdate1);
} catch (ParseException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
从互联网上的一些挖掘中,我认为这表明该变量未通过尝试。但是,我看不出它怎么可能失败。
答案 0 :(得分:6)
date1
变量在你的情况下不是明确赋值(如果由于catch子句没有为变量赋值而抛出异常,它将不会获得任何值),所以你以后不能使用它(例如,打印)。
要解决此问题,您可以为变量赋予一些初始值:
Date date1 = null;
try {
date1 = dateformat.parse(sdate1);
} catch (ParseException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
if (date1 != null) {
// it was parsed successfully
.. do something with it
}
答案 1 :(得分:3)
当您声明变量时,您所要做的就是初始化变量:
Date date1 = null;
答案 2 :(得分:3)
你尝试使用try / catch之后的日期,这意味着你在try块的不同范围内使用它,因为你得到这个错误,要解决这个问题,你必须初始化日期,例如:
#include <type_traits>
#include <utility>
static constexpr std::size_t max_str_lit_len = 256;
template <std::size_t I, std::size_t N> constexpr char sl_at(const char (&str)[N])
{
if constexpr(I < N)
return str[I];
else
return '\0';
}
constexpr std::size_t sl_len(const char *str)
{
for (std::size_t i = 0; i < max_str_lit_len; i++)
if (str[i] == '\0')
return i;
return 0;
}
template <char ...C> struct str_lit
{
static constexpr char value[] {C..., '\0'};
static constexpr int size = sl_len(value);
template <typename F, typename ...P> struct concat_impl {using type = typename concat_impl<F>::type::template concat_impl<P...>::type;};
template <char ...CC> struct concat_impl<str_lit<CC...>> {using type = str_lit<C..., CC...>;};
template <typename ...P> using concat = typename concat_impl<P...>::type;
};
template <typename, const char *> struct trim_str_lit_impl;
template <std::size_t ...I, const char *S> struct trim_str_lit_impl<std::index_sequence<I...>, S>
{
using type = str_lit<S[I]...>;
};
template <std::size_t N, const char *S> using trim_str_lit = typename trim_str_lit_impl<std::make_index_sequence<N>, S>::type;
#define STR_LIT(str) ::trim_str_lit<::sl_len(str), ::str_lit<STR_TO_VA(str)>::value>
#define STR_TO_VA(str) STR_TO_VA_16(str,0),STR_TO_VA_16(str,16),STR_TO_VA_16(str,32),STR_TO_VA_16(str,48)
#define STR_TO_VA_16(str,off) STR_TO_VA_4(str,0+off),STR_TO_VA_4(str,4+off),STR_TO_VA_4(str,8+off),STR_TO_VA_4(str,12+off)
#define STR_TO_VA_4(str,off) ::sl_at<off+0>(str),::sl_at<off+1>(str),::sl_at<off+2>(str),::sl_at<off+3>(str)
template <char ...C> constexpr str_lit<C...> make_str_lit(str_lit<C...>) {return {};}
template <std::size_t N> constexpr auto make_str_lit(const char (&str)[N])
{
return trim_str_lit<sl_len((const char (&)[N])str), str>{};
}
template <std::size_t A, std::size_t B> struct cexpr_pow {static constexpr std::size_t value = A * cexpr_pow<A,B-1>::value;};
template <std::size_t A> struct cexpr_pow<A,0> {static constexpr std::size_t value = 1;};
template <std::size_t N, std::size_t X, typename = std::make_index_sequence<X>> struct num_to_str_lit_impl;
template <std::size_t N, std::size_t X, std::size_t ...Seq> struct num_to_str_lit_impl<N, X, std::index_sequence<Seq...>>
{
static constexpr auto func()
{
if constexpr (N >= cexpr_pow<10,X>::value)
return num_to_str_lit_impl<N, X+1>::func();
else
return str_lit<(N / cexpr_pow<10,X-1-Seq>::value % 10 + '0')...>{};
}
};
template <std::size_t N> using num_to_str_lit = decltype(num_to_str_lit_impl<N,1>::func());
using spa = str_lit<' '>;
using lpa = str_lit<'('>;
using rpa = str_lit<')'>;
using lbr = str_lit<'['>;
using rbr = str_lit<']'>;
using ast = str_lit<'*'>;
using amp = str_lit<'&'>;
using con = str_lit<'c','o','n','s','t'>;
using vol = str_lit<'v','o','l','a','t','i','l','e'>;
using con_vol = con::concat<spa, vol>;
using nsp = str_lit<':',':'>;
using com = str_lit<','>;
using unk = str_lit<'?','?'>;
using c_cla = str_lit<'c','l','a','s','s','?'>;
using c_uni = str_lit<'u','n','i','o','n','?'>;
using c_enu = str_lit<'e','n','u','m','?'>;
template <typename T> inline constexpr bool ptr_or_ref = std::is_pointer_v<T> || std::is_reference_v<T> || std::is_member_pointer_v<T>;
template <typename T> inline constexpr bool func_or_arr = std::is_function_v<T> || std::is_array_v<T>;
template <typename T> struct primitive_type_name {using value = unk;};
template <typename T, typename = std::enable_if_t<std::is_class_v<T>>> using enable_if_class = T;
template <typename T, typename = std::enable_if_t<std::is_union_v<T>>> using enable_if_union = T;
template <typename T, typename = std::enable_if_t<std::is_enum_v <T>>> using enable_if_enum = T;
template <typename T> struct primitive_type_name<enable_if_class<T>> {using value = c_cla;};
template <typename T> struct primitive_type_name<enable_if_union<T>> {using value = c_uni;};
template <typename T> struct primitive_type_name<enable_if_enum <T>> {using value = c_enu;};
template <typename T> struct type_name_impl;
template <typename T> using type_name_lit = std::conditional_t<std::is_same_v<typename primitive_type_name<T>::value::template concat<spa>,
typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>,
typename primitive_type_name<T>::value,
typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>;
template <typename T> inline constexpr const char *type_name = type_name_lit<T>::value;
template <typename T, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_volatile_v<T>>> using enable_if_no_cv = T;
template <typename T> struct type_name_impl
{
using l = typename primitive_type_name<T>::value::template concat<spa>;
using r = str_lit<>;
};
template <typename T> struct type_name_impl<const T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<con>,
con::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<volatile T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<vol>,
vol::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<const volatile T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<con_vol>,
con_vol::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<T *>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, ast>,
typename type_name_impl<T>::l::template concat< ast>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, amp>,
typename type_name_impl<T>::l::template concat< amp>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &&>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, amp, amp>,
typename type_name_impl<T>::l::template concat< amp, amp>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T, typename C> struct type_name_impl<T C::*>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, type_name_lit<C>, nsp, ast>,
typename type_name_impl<T>::l::template concat< type_name_lit<C>, nsp, ast>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<enable_if_no_cv<T[]>>
{
using l = typename type_name_impl<T>::l;
using r = lbr::concat<rbr, typename type_name_impl<T>::r>;
};
template <typename T, std::size_t N> struct type_name_impl<enable_if_no_cv<T[N]>>
{
using l = typename type_name_impl<T>::l;
using r = lbr::concat<num_to_str_lit<N>, rbr, typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T()>
{
using l = typename type_name_impl<T>::l;
using r = lpa::concat<rpa, typename type_name_impl<T>::r>;
};
template <typename T, typename P1, typename ...P> struct type_name_impl<T(P1, P...)>
{
using l = typename type_name_impl<T>::l;
using r = lpa::concat<type_name_lit<P1>,
com::concat<type_name_lit<P>>..., rpa, typename type_name_impl<T>::r>;
};
#define TYPE_NAME(t) template <> struct primitive_type_name<t> {using value = STR_LIT(#t);};
答案 3 :(得分:3)
如果您对try catch不满意,请在方法声明中抛出ParseException。你的代码应该可以正常工作。
答案 4 :(得分:2)
您可以初始化date1 = null或在try / catch中移动它。
String sdate1 = "01/04/2016";
SimpleDateFormat dateformat = new SimpleDateFormat("dd/MM/yyyy");
try {
Date date1 = dateformat.parse(sdate1);
System.out.println(date1);
} catch (ParseException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
希望得到这个帮助。