我尝试训练一个CNN模型,2个类,它基于张量流来进行图像分类。
我对时代,学习率,批量大小和CNN大小做了很多修改,但没有任何作用。
86(标签:0)+ 63(标签:1)图片
形状:(128,128)
learning_rate = 0.00005(我已尝试从0.00000001到0.8 ......)
批量大小= 30 (我也试过5到130)
epoch = 20
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1, dtype = tf.float32)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape = shape, dtype = tf.float32)
return tf.Variable(initial)
def conv2d(x, W):
#(input, filter, strides, padding)
#[batch, height, width, in_channels]
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
#(value, ksize, strides, padding)
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def cnn_model():
epochs = 20
batch_size = 30
learning_rate = 0.00005
hidden = 2
cap_c = 86
cap_h = 63
num = cap_c + cap_h
image_size = 128
label_size = 2
print ((num//(batch_size)) * epochs)
train_loss = np.empty((num//(batch_size)) * epochs)
train_acc = np.empty((num//(batch_size)) * epochs)
x = tf.placeholder(tf.float32, shape = [None, image_size, image_size])
y = tf.placeholder(tf.float32, shape = [None, label_size])
weight_balance = tf.constant([0.1])
X_train_ = tf.reshape(x, [-1, image_size, image_size, 1])
#First layer
W_conv1 = weight_variable([5, 5, 1, 4])
b_conv1 = bias_variable([4])
h_conv1 = tf.nn.relu(conv2d(X_train_, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# #Second layer
# W_conv2 = weight_variable([5, 5, 4, 8])
# b_conv2 = bias_variable([8])
#
# h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# h_pool2 = max_pool_2x2(h_conv2)
#
# Third layer
# W_conv3 = weight_variable([5, 5, 8, 16])
# b_conv3 = bias_variable([16])
#
# h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
# h_pool3 = max_pool_2x2(h_conv3)
#Full connect layer
W_fc1 = weight_variable([64 * 64 * 4, hidden])
b_fc1 = bias_variable([hidden])
h_pool2_flat = tf.reshape(h_pool1, [-1, 64 * 64 * 4])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#Output_Softmax
W_fc2 = weight_variable([hidden, label_size])
b_fc2 = bias_variable([label_size])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
print y_conv.shape
#Train
loss = tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(y, y_conv, weight_balance))
optimize = tf.train.AdamOptimizer(learning_rate).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
损失不会收敛,也不准确。
我不知道我的CNN模型是否不适合我的数据? 或
网络的激活功能和丢失功能不合适?
真的,谢谢你
答案 0 :(得分:1)
代码有几个问题:
softmax
,然后调用tf.nn.weighted_cross_entropy_with_logits
,而sigmoid
又会激活Xavier
,因此您需要激活两次。Variance_scaling
或tf.layers API
以加快收敛速度。最好使用Ozone
来实现模型,因为默认设置遵循最佳实践。