使用 zip(* map(...))调用时出错。很长的解释见下文。
TypeError:zip参数#1必须支持迭代
这是我得到的。包含城市及其在经度和纬度中的位置的数据框。现在我想使用harversine formular来计算城市之间的距离。
起点是这个Pandas DataFrame:
df['tmp'] = 1
df2 = pd.merge(df,df,on='tmp')
df2 = df2[df2.city_x != df2.city_y]
然后我将自己加入数据框,以获得成对的城市:
city_x lat_x lng_x tmp city_y lat_y lng_y
1 Berlin 52.52437 13.41053 1 Potsdam 52.39886 13.06566
2 Berlin 52.52437 13.41053 1 Hamburg 53.57532 10.01534
3 Potsdam 52.39886 13.06566 1 Berlin 52.52437 13.41053
5 Potsdam 52.39886 13.06566 1 Hamburg 53.57532 10.01534
6 Hamburg 53.57532 10.01534 1 Berlin 52.52437 13.41053
7 Hamburg 53.57532 10.01534 1 Potsdam 52.39886 13.06566
这给了我这个:
def haversine_distance(lng1: float, lat1: float, lng2: float, lat2: float) -> float:
"""
Computes the distance in kilometers between two points on a sphere given their longitudes and latitudes
based on the Harversine formula. https://en.wikipedia.org/wiki/Haversine_formula
"""
from math import radians, cos, sin, asin, sqrt
R = 6371 # Radius of earth in kilometers. Use 3956 for miles
lng1, lat1, lng2, lat2 = map(radians, [lng1, lat1, lng2, lat2])
# haversine formula
dlng = lng2 - lng1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlng/2)**2
c = 2 * asin(sqrt(a))
distance = c * R
return distance
现在让我们做重要的事情。哈维森公式被置于一个函数中:
def get_haversine_distance(lng1: pd.Series, lat1: pd.Series, lng2: pd.Series, lat2: pd.Series) -> pd.Series:
dist = zip(*map(haversine_distance, lng1, lat1, lng2, lat2))
return dist
# now invoke the method in order to get a new column (series) back
get_haversine_distance(df2['lng_x'], df2['lat_x'], df2['lng_y'], df2['lat_y'])
然后应在连接的数据帧上调用此函数:
def lat_lng_to_cartesian(lat: float, lng: float) -> float:
from math import radians, cos, sin
R = 6371 # Radius of earth in kilometers. Use 3956 for miles
lat_, lng_ = map(radians, [lat, lng])
x = R * cos(lat_) * cos(lng_)
y = R * cos(lat_) * sin(lng_)
z = R * sin(lat_)
return x, y, z
def get_cartesian_coordinates(lat: pd.Series, lng: pd.Series) -> (pd.Series, pd.Series, pd.Series):
if lat is None or lng is None:
return
x, y, z = zip(*map(lat_lng_to_cartesian, lat, lng))
return x, y, z
get_cartesian_coordinates(df2['lat_x'], df2['lng_x'])
问题/错误:这会给我以下错误:
TypeError:zip参数#1必须支持迭代
备注:我没有得到的,这就是我收到错误的原因,因为其他方法(见下文)的效果非常好。基本上是一样的!
{{1}}
答案 0 :(得分:3)
您的haversine_distance
函数返回一个数字,但zip
想要一个可迭代的数据,因此它会因异常而失败。
lat_lng_to_cartesian
有效,因为它返回了一个可以迭代的3元组。
你可以通过返回1元组来消除异常:
return (distance,)
但是我没有看到在这里做到这一点 - 你实际上根本不需要拉链:
def get_haversine_distance(lng1: pd.Series, lat1: pd.Series, lng2: pd.Series, lat2: pd.Series) -> pd.Series:
dist = map(haversine_distance, lng1, lat1, lng2, lat2)
return pd.Series(dist)
答案 1 :(得分:1)
正如我在评论中提到的,为了能够以您当前定义的方式使用haversine_distance
,您需要先zip
这些列mapping
get_haversine_distance
1}}。实质上,在将每个元组解压缩为zipping
函数的参数之前,您需要编辑haversine_distance
函数以确保它是import pandas as pd
import numpy as np
df = pd.DataFrame([{'city':"Berlin", 'lat':52.5243700, 'lng':13.4105300},
{'city':"Potsdam", 'lat':52.3988600, 'lng':13.0656600},
{'city':"Hamburg", 'lat':53.5753200, 'lng':10.0153400}]);
df
# city lat lng tmp
# 0 Berlin 52.52437 13.41053 1
# 1 Potsdam 52.39886 13.06566 1
# 2 Hamburg 53.57532 10.01534 1
# Make sure to reset the index after you filter out the unneeded rows
df['tmp'] = 1
df2 = pd.merge(df,df,on='tmp')
df2 = df2[df2.city_x != df2.city_y].reset_index(drop=True)
# city_x lat_x lng_x tmp city_y lat_y lng_y
# 0 Berlin 52.52437 13.41053 1 Potsdam 52.39886 13.06566
# 1 Berlin 52.52437 13.41053 1 Hamburg 53.57532 10.01534
# 2 Potsdam 52.39886 13.06566 1 Berlin 52.52437 13.41053
# 3 Potsdam 52.39886 13.06566 1 Hamburg 53.57532 10.01534
# 4 Hamburg 53.57532 10.01534 1 Berlin 52.52437 13.41053
# 5 Hamburg 53.57532 10.01534 1 Potsdam 52.39886 13.06566
def get_haversine_distance(lng1: pd.Series, lat1: pd.Series, lng2: pd.Series, lat2: pd.Series) -> pd.Series:
dist = pd.Series(map(lambda x: haversine_distance(*x), zip(lng1, lat1, lng2, lat2)))
return dist
def haversine_distance(lng1: float, lat1: float, lng2: float, lat2: float) -> float:
"""
Computes the distance in kilometers between two points on a sphere given their longitudes and latitudes
based on the Harversine formula. https://en.wikipedia.org/wiki/Haversine_formula
"""
from math import radians, cos, sin, asin, sqrt
R = 6371 # Radius of earth in kilometers. Use 3956 for miles
lng1, lat1, lng2, lat2 = map(radians, [lng1, lat1, lng2, lat2])
# haversine formula
dlng = lng2 - lng1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlng/2)**2
c = 2 * asin(sqrt(a))
distance = c * R
return distance
df2['distance'] = get_haversine_distance(df2['lng_x'], df2['lat_x'], df2['lng_y'], df2['lat_y'])
# city_x lat_x lng_x tmp city_y lat_y lng_y distance
# 0 Berlin 52.52437 13.41053 1 Potsdam 52.39886 13.06566 27.215704
# 1 Berlin 52.52437 13.41053 1 Hamburg 53.57532 10.01534 255.223782
# 2 Potsdam 52.39886 13.06566 1 Berlin 52.52437 13.41053 27.215704
# 3 Potsdam 52.39886 13.06566 1 Hamburg 53.57532 10.01534 242.464120
# 4 Hamburg 53.57532 10.01534 1 Berlin 52.52437 13.41053 255.223782
# 5 Hamburg 53.57532 10.01534 1 Potsdam 52.39886 13.06566 242.464120
对应的元组行。以下是使用提供的数据的说明:
disadvantage
如果您希望输出看起来像这样,请告诉我。
答案 2 :(得分:1)
Andrea指出问题是hasrsine_distance返回一个数字而不是迭代器。话虽这么说,你也可以使用apply
来df2:
df2.apply(lambda row: haversine_distance(row['lng_x'], row['lat_x'], row['lng_y'], row['lat_y']), axis=1)