我在使用Cloud ML引擎运行的培训师应用程序中使用以下代码:
credentials, project = google.auth.default(scopes=['https://www.googleapis.com/auth/cloudkms'])
kms_client = googleapiclient.discovery.build('cloudkms', 'v1', credentials=credentials)
我收到以下错误:
File "/root/.local/lib/python2.7/site-packages/trainer/kms.py", line 110, in decrypt
kms_client = googleapiclient.discovery.build('cloudkms', 'v1', credentials=credentials)
File "/usr/local/lib/python2.7/dist-packages/oauth2client/util.py", line 135, in positional_wrapper
return wrapped(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/googleapiclient/discovery.py", line 210, in build
credentials=credentials)
File "/usr/local/lib/python2.7/dist-packages/oauth2client/util.py", line 135, in positional_wrapper
return wrapped(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/googleapiclient/discovery.py", line 341, in build_from_document
http = credentials.authorize(http)
AttributeError: 'Credentials' object has no attribute 'authorize'
我可以从安装了Google云端SDK的本地计算机上运行相同的代码,没有任何问题。 如果我在这里遗漏了什么,请告诉我。
答案 0 :(得分:0)
您是否介意按照指定here尝试oauth2client.client.GoogleCredentials
?
然后通过获取凭据
credentials = GoogleCredentials.get_application_default()
build()
方法将负责为给定服务注入适当的范围,尽管方法create_scoped
可用于明确地执行此操作。
我不完全确定这会对你有用,但这是朝着正确方向迈出的一步。
使用ADC绝对可行......但最终您可能希望作为服务帐户运行,以便更好地审核您的密钥访问权限。