我尝试在滚动窗口中使用matplotlib绘制快速数据(每秒1-10个数据点)。
我喜欢熊猫,因为它很简单。
我的问题是:
我的框架是否有效(关于使用pandas,matplotlib'" plt.draw")?
如果循环运行的时间为1' 000' 000&000;数据帧(self.df)会变得太大 - >是否最好在某个时刻删除数据收集器,然后从空数据框开始?但那么滚动窗口的连续性呢?
一段时间后,这个例子开始变得很慢。是因为效率低下还是由于内存使用效率低下而导致
控制台显示警告:
MatplotlibDeprecationWarning:使用默认事件循环直到函数 特定于此GUI实现warnings.warn(str,mplDeprecation)
我必须照顾好吗?
提前致谢
这是我到目前为止所做的:
import numpy as np
import matplotlib.pyplot as plt; plt.ion()
import pandas as pd
import matplotlib
import matplotlib.gridspec as gridspec
plt.style.use('ggplot')
from pathlib import Path
import datetime
import matplotlib
class tradeScreen(object):
def __init__(self):
self.rollingWindow = 100
self.df = pd.DataFrame(dict(time=np.NaN, bid=np.NaN, ask=np.NaN, limitBuy=np.NaN, limitSell=np.NaN, stopLoss=np.NaN), index=np.arange(self.rollingWindow))
self.df['time'] = pd.to_datetime(self.df['time']) # format 'time' as datetime object
# initialise plot and line
plt.figure()
G = gridspec.GridSpec(2, 1)
self.axes_1 = plt.subplot(G[0, :])
self.axes_1.set_ylabel('First Panel')
self.axes_2 = plt.subplot(G[1, :])
self.axes_2.set_ylabel('Second Panel')
self.line1, = self.axes_1.plot(self.df['time'], self.df['bid'])
self.line2, = self.axes_1.plot(self.df['time'], self.df['ask'])
self.line3, = self.axes_1.plot(self.df['time'], self.df['limitBuy'])
self.line4, = self.axes_1.plot(self.df['time'], self.df['limitSell'])
self.line5, = self.axes_2.plot(self.df['time'], self.df['stopLoss'])
def plotter(self, tick, i):
df = self.df
rollingWindow = self.rollingWindow
current_time = pd.datetime.now()
df.loc[i, "bid"] = tick["bid"].values.item(0)
df.loc[i, "ask"] = tick["ask"].values.item(0)
df.loc[i, "limitBuy"] = tick["limitBuy"].values.item(0)
df.loc[i, "limitSell"] = tick["limitSell"].values.item(0)
df.loc[i, "stopLoss"] = tick["stopLoss"].values.item(0)
df.loc[i, "time"] = current_time
self.line1.set_data(pd.to_datetime(df['time'][:i].tail(rollingWindow)), df['bid'][:i].tail(rollingWindow))
self.line2.set_data(pd.to_datetime(df['time'][:i].tail(rollingWindow)), df['ask'][:i].tail(rollingWindow))
self.line3.set_data(pd.to_datetime(df['time'][:i].tail(rollingWindow)), df['limitBuy'][:i].tail(rollingWindow))
self.line4.set_data(pd.to_datetime(df['time'][:i].tail(rollingWindow)), df['limitSell'][:i].tail(rollingWindow))
self.line5.set_data(pd.to_datetime(df['time'][:i].tail(rollingWindow)), df['stopLoss'][:i].tail(rollingWindow))
self.axes_1.autoscale_view(True, True, True)
self.axes_1.relim()
self.axes_2.autoscale_view(True, True, True)
self.axes_2.relim()
plt.draw()
plt.pause(0.00000000000000001)
p = tradeScreen()
i = 0
for i in np.arange(300):
# generate random data point
t = pd.datetime.now()
bid = np.random.rand()
ask = np.random.rand()
limitBuy = np.random.rand()
limitSell = np.random.rand()
stopLoss = np.random.rand()
tick = pd.DataFrame(dict(time=t, bid=bid, ask=ask, limitBuy=limitBuy, limitSell=limitSell, stopLoss=stopLoss),
index=np.arange(1))
p.plotter(tick, i)
i += 1
答案 0 :(得分:0)
您可能需要查看Animation
模块,以便在matplotlib
中制作动画。请参阅此链接以获取解释:http://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial/
对于后人,该页面上的第一个示例是Animation
系统的要点:
"""
Matplotlib Animation Example
author: Jake Vanderplas
email: vanderplas@astro.washington.edu
website: http://jakevdp.github.com
license: BSD
Please feel free to use and modify this, but keep the above information. Thanks!
"""
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
# First set up the figure, the axis, and the plot element we want to animate
fig = plt.figure()
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
line, = ax.plot([], [], lw=2)
# initialization function: plot the background of each frame
def init():
line.set_data([], [])
return line,
# animation function. This is called sequentially
def animate(i):
x = np.linspace(0, 2, 1000)
y = np.sin(2 * np.pi * (x - 0.01 * i))
line.set_data(x, y)
return line,
# call the animator. blit=True means only re-draw the parts that have changed.
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=200, interval=20, blit=True)
在最后一行使用blitting(blit=True
)可能会提高你的表现。
但是,AFAIK matplotlib的设计并未考虑到性能,您可以查看更适合此任务的其他库,例如PyQtGraph