我有一个数据框:
val groupby = df.groupBy($"column1",$"Date")
.agg(sum("amount").as("amount"))
.orderBy($"column1",desc("cob_date"))
当应用窗口函数添加新的列差异时:
val windowspec= Window.partitionBy("column1").orderBy(desc("DATE"))
groupby.withColumn("diffrence" ,lead($"amount", 1,0).over(windowspec)).show()
+--------+------------+-----------+--------------------------+
| Column | Date | Amount | Difference |
+--------+------------+-----------+--------------------------+
| A | 3/31/2017 | 12345.45 | 3456.540000000000000000 |
+--------+------------+-----------+--------------------------+
| A | 2/28/2017 | 3456.54 | 34289.430000000000000000 |
+--------+------------+-----------+--------------------------+
| A | 1/31/2017 | 34289.43 | 45673.987000000000000000 |
+--------+------------+-----------+--------------------------+
| A | 12/31/2016 | 45673.987 | 0.00E+00 |
+--------+------------+-----------+--------------------------+
我得到十进制的尾随零。当我为上面的数据帧printSchema()
获取差异的数据类型:decimal(38,18)
。有人可以告诉我如何将数据类型更改为{{ 1}}或删除尾随零
答案 0 :(得分:2)
您可以使用特定的十进制大小来转换数据,如下所示
lead($"amount", 1,0).over(windowspec).cast(DataTypes.createDecimalType(32,2))
答案 1 :(得分:0)
在纯SQL中,您可以使用众所周知的技术:
SELECT ceil(100 * column_name_double)/100 AS cost ...
答案 2 :(得分:0)
from pyspark.sql.types import DecimalType
df=df.withColumn(column_name, df[column_name].cast(DecimalType(10,2)))