我试图在深DAE中实现一个RNN层,如图所示:
DRDAE:
我的代码是根据DAE教程修改的,我将一层更改为基本的LSTM RNN层。它不知何故可以工作。不同图片之间输出的噪音似乎在同一个地方。
然而,与仅有一层RNN和DAE教程相比,结构的性能要差得多。并且它需要更多的迭代才能达到更低的成本。
有人可以帮助为什么结构会变得更糟?以下是我的DRDAE代码。
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# Parameters
learning_rate = 0.0001
training_epochs = 50001
batch_size = 256
display_step = 500
examples_to_show = 10
total_batch = int(mnist.train.num_examples/batch_size)
# Network Parameters
n_input = 784 # data input
n_hidden_1 = 392 # 1st layer num features
n_hidden_2 = 196 # 2nd layer num features
n_steps = 14
# tf Graph input
X = tf.placeholder("float", [None, n_input])
Y = tf.placeholder("float", [None, n_input])
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input])),
}
def RNN(x, size, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.split(x,n_steps,1)
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(size, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights) + biases
# Building the encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2']))
return layer_2
# Building the decoder
def decoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = RNN(x, n_hidden_2, weights['decoder_h1'],biases['decoder_b1'])
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2']))
return layer_2
# Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)
# Prediction
y_pred = decoder_op
# Targets (Labels) are the original data.
y_true = Y
# Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(y_pred,1), tf.argmax(y_true,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
#with tf.device("/cpu:0"):
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch, _ = mnist.train.next_batch(batch_size)
origin = batch
# Run optimization op (backprop) and cost op (to get loss value)
sess.run(optimizer, feed_dict={X: batch, Y: origin})
# Display logs per epoch step
if epoch % display_step == 0:
c, acy = sess.run([cost, accuracy], feed_dict={X: batch, Y: origin})
print("Epoch:", '%05d' % (epoch+1), "cost =", "{:.9f}".format(c), "accuracy =", "{:.3f}".format(acy))
print("Optimization Finished!")
# Applying encode and decode over test set
encode_decode = sess.run(
y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
# Compare original images with their reconstructions
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(examples_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))