我正在尝试将下面的行索引从最大到最小排序:
我的第一次尝试是:
plot_df_dropoff.sort_index(by=["dropoff_latitude"], ascending=False)
但我得到了Key Value Error
。
基于this link的第二个想法也不起作用。它返回了None
。
这看起来很简单,但我无法弄清楚。任何帮助将非常感激。
id
pickup_longitude (-74.03, -74.025] (-74.025, -74.02] (-74.02, -74.015] (-74.015, -74.01] (-74.01, -74.005] (-74.005, -74] (-74, -73.995] (-73.995, -73.99] (-73.99, -73.985] (-73.985, -73.98] ... (-73.82, -73.815] (-73.815, -73.81] (-73.81, -73.805] (-73.805, -73.8] (-73.8, -73.795] (-73.795, -73.79] (-73.79, -73.785] (-73.785, -73.78] (-73.78, -73.775] (-73.775, -73.77]
pickup_latitude
(40.63, 40.64] 5.0 10.0 8.0 2.0 3.0 1.0 NaN 2.0 1.0 1.0 ... NaN NaN NaN NaN 1.0 NaN 7.0 1.0 NaN NaN
(40.64, 40.65] 2.0 2.0 14.0 16.0 2.0 4.0 6.0 3.0 5.0 11.0 ... NaN NaN NaN 149.0 164.0 3580.0 7532.0 11381.0 5596.0 NaN
(40.65, 40.66] NaN NaN NaN 2.0 22.0 41.0 11.0 2.0 4.0 13.0 ... NaN 1.0 146.0 7.0 3.0 201.0 81.0 2.0 1.0 2.0
(40.66, 40.67] NaN NaN NaN NaN NaN 2.0 60.0 143.0 180.0 122.0 ... NaN 4.0 24.0 126.0 15.0 47.0 32.0 4.0 3.0 3.0
(40.67, 40.68] NaN NaN 7.0 44.0 18.0 200.0 328.0 65.0 293.0 590.0 ... 3.0 3.0 1.0 131.0 1.0 1.0 2.0 1.0 1.0 2.0
这是一个可能更容易使用的小部分:
id \
pickup_longitude (-74.03, -74.025] (-74.025, -74.02] (-74.02, -74.015]
pickup_latitude
(40.63, 40.64] 5.0 10.0 8.0
(40.64, 40.65] 2.0 2.0 14.0
(40.65, 40.66] NaN NaN NaN
(40.66, 40.67] NaN NaN NaN
(40.67, 40.68] NaN NaN 7.0
(40.68, 40.69] NaN NaN NaN
(40.69, 40.7] NaN 1.0 1.0
(40.7, 40.71] 1.0 1.0 3841.0
(40.71, 40.72] NaN 2.0 6537.0
(40.72, 40.73] NaN NaN NaN
(40.73, 40.74] 9.0 2.0 NaN
答案 0 :(得分:1)
您可以reset index和sort by values。
尝试:
>>>plot_df_dropoff.reset_index().sort_values(by=["dropoff_latitude"], ascending=False)
正如@JohnE所提到的,你也可以使用sort_index():
>>>plot_df_dropoff.sort_index(ascending=False)