我有一个数据框:
customer_id [1,2,3,4,5,6,7,8,9,10]
feature1 [0,0,1,1,0,0,1,1,0,0]
feature2 [1,0,1,0,1,0,1,0,1,0]
feature3 [0,0,1,0,0,0,1,0,0,0]
使用这个我想创建一个新变量(比如new_var)来表示当feature 1为1然后new_var = 1,如果feature_2 = 1则new_var = 2,feature3 = 1则new_var = 3 else 4.我是尝试np.where虽然它没有给我一个错误,但它没有做正确的事 - 所以我猜一个嵌套的np.where只能处理一个变量。在这种情况下,在pandas中执行嵌套if / case的最佳方法是什么?
我的np.where代码是这样的:
df[new_var]=np.where(df['feature1']==1,'1', np.where(df['feature2']==1,'2', np.where(df[feature3']==1,'3','4')))
答案 0 :(得分:1)
我认为您需要numpy.select
- 它会选择第一个True
值,而所有其他值都不重要:
m1 = df['feature1']==1
m2 = df['feature2']==1
m3 = df['feature3']==1
df['new_var'] = np.select([m1, m2, m3], ['1', '2', '3'], default='4')
<强>示例强>:
customer_id = [1,2,3,4,5,6,7,8,9,10]
feature1 = [0,0,1,1,0,0,1,1,0,0]
feature2 = [1,0,1,0,1,0,1,0,1,0]
feature3 = [0,0,1,0,0,0,1,0,0,0]
df = pd.DataFrame({'customer_id':customer_id,
'feature1':feature1,
'feature2':feature2,
'feature3':feature3})
m1 = df['feature1']==1
m2 = df['feature2']==1
m3 = df['feature3']==1
df['new_var'] = np.select([m1, m2, m3], ['1', '2', '3'], default='4')
print (df)
customer_id feature1 feature2 feature3 new_var
0 1 0 1 0 2
1 2 0 0 0 4
2 3 1 1 1 1
3 4 1 0 0 1
4 5 0 1 0 2
5 6 0 0 0 4
6 7 1 1 1 1
7 8 1 0 0 1
8 9 0 1 0 2
9 10 0 0 0 4
如果只有features
1
和0
可以将0
转换为False
而将1
转换为True
:< / p>
m1 = df['feature1'].astype(bool)
m2 = df['feature2'].astype(bool)
m3 = df['feature3'].astype(bool)
df['new_var'] = np.select([m1, m2, m3], ['1', '2', '3'], default='4')
print (df)
customer_id feature1 feature2 feature3 new_var
0 1 0 1 0 2
1 2 0 0 0 4
2 3 1 1 1 1
3 4 1 0 0 1
4 5 0 1 0 2
5 6 0 0 0 4
6 7 1 1 1 1
7 8 1 0 0 1
8 9 0 1 0 2
9 10 0 0 0 4
答案 1 :(得分:0)
试试:
df['new_var']=np.where(df['feature3']==1, '3', '4')
df['new_var']=np.where(df['feature2']==1,'2', df['new_var'])
df['new_var']=np.where(df['feature1']==1, '1', df['new_var'])