答案 0 :(得分:19)
这实际上是一个背对背的条形图,就像在优秀的学习者博客中使用ggplot2
生成的那样:http://learnr.wordpress.com/2009/09/24/ggplot2-back-to-back-bar-charts/
您可以将coord_flip
与其中一个图表一起使用,但我不知道如何让它在两个图表之间共享y轴标签,就像您上面所做的那样。下面的代码应该让你足够接近原始代码:
首先创建一个数据样本数据框,将Age列转换为具有所需断点的因子:
require(ggplot2)
df <- data.frame(Type = sample(c('Male', 'Female', 'Female'), 1000, replace=TRUE),
Age = sample(18:60, 1000, replace=TRUE))
AgesFactor <- ordered( cut(df$Age, breaks = c(18,seq(20,60,5)),
include.lowest = TRUE))
df$Age <- AgesFactor
现在开始构建情节:使用相应的数据子集创建男性和女性情节,抑制传说等。
gg <- ggplot(data = df, aes(x=Age))
gg.male <- gg +
geom_bar( subset = .(Type == 'Male'),
aes( y = ..count../sum(..count..), fill = Age)) +
scale_y_continuous('', formatter = 'percent') +
opts(legend.position = 'none') +
opts(axis.text.y = theme_blank(), axis.title.y = theme_blank()) +
opts(title = 'Male', plot.title = theme_text( size = 10) ) +
coord_flip()
对于女性情节,使用trans = "reverse"
...
gg.female <- gg +
geom_bar( subset = .(Type == 'Female'),
aes( y = ..count../sum(..count..), fill = Age)) +
scale_y_continuous('', formatter = 'percent', trans = 'reverse') +
opts(legend.position = 'none') +
opts(axis.text.y = theme_blank(),
axis.title.y = theme_blank(),
title = 'Female') +
opts( plot.title = theme_text( size = 10) ) +
coord_flip()
现在创建一个绘图只是为了使用geom_text
显示年龄括号,但也使用虚拟geom_bar
来确保此绘图中“年龄”轴的缩放与男女情节:
gg.ages <- gg +
geom_bar( subset = .(Type == 'Male'), aes( y = 0, fill = alpha('white',0))) +
geom_text( aes( y = 0, label = as.character(Age)), size = 3) +
coord_flip() +
opts(title = 'Ages',
legend.position = 'none' ,
axis.text.y = theme_blank(),
axis.title.y = theme_blank(),
axis.text.x = theme_blank(),
axis.ticks = theme_blank(),
plot.title = theme_text( size = 10))
最后,使用Hadley Wickham的书中的方法将图块排列在网格上:
grid.newpage()
pushViewport( viewport( layout = grid.layout(1,3, widths = c(.4,.2,.4))))
vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y)
print(gg.female, vp = vplayout(1,1))
print(gg.ages, vp = vplayout(1,2))
print(gg.male, vp = vplayout(1,3))
答案 1 :(得分:15)
我做了一些解决方法 - 而不是使用geom_bar,我使用了geom_linerange和geom_label。
library(magrittr)
library(dplyr)
library(ggplot2)
population <- read.csv("https://raw.githubusercontent.com/andriy-gazin/datasets/master/ageSexDistribution.csv")
population %<>%
tidyr::gather(sex, number, -year, - ageGroup) %>%
mutate(ageGroup = gsub("100 і старше", "≥100", ageGroup),
ageGroup = factor(ageGroup,
ordered = TRUE,
levels = c("0-4", "5-9", "10-14", "15-19", "20-24",
"25-29", "30-34", "35-39", "40-44",
"45-49", "50-54", "55-59", "60-64",
"65-69", "70-74", "75-79", "80-84",
"85-89", "90-94", "95-99", "≥100")),
number = ifelse(sex == "male", number*-1/10^6, number/10^6)) %>%
filter(year %in% c(1990, 1995, 2000, 2005, 2010, 2015))
png(filename = "~/R/pyramid.png", width = 900, height = 1000, type = "cairo")
ggplot(population, aes(x = ageGroup, color = sex))+
geom_linerange(data = population[population$sex=="male",],
aes(ymin = -0.3, ymax = -0.3+number), size = 3.5, alpha = 0.8)+
geom_linerange(data = population[population$sex=="female",],
aes(ymin = 0.3, ymax = 0.3+number), size = 3.5, alpha = 0.8)+
geom_label(aes(x = ageGroup, y = 0, label = ageGroup, family = "Ubuntu Condensed"),
inherit.aes = F,
size = 3.5, label.padding = unit(0.0, "lines"), label.size = 0,
label.r = unit(0.0, "lines"), fill = "#EFF2F4", alpha = 0.9, color = "#5D646F")+
scale_y_continuous(breaks = c(c(-2, -1.5, -1, -0.5, 0) + -0.3, c(0, 0.5, 1, 1.5, 2)+0.3),
labels = c("2", "1.5", "1", "0.5", "0", "0", "0.5", "1", "1.5", "2"))+
facet_wrap(~year, ncol = 2)+
coord_flip()+
labs(title = "Піраміда населення України",
subtitle = "Статево-вікові групи у 1990-2015 роках, млн осіб",
caption = "Дані: Держкомстат України")+
scale_color_manual(name = "", values = c(male = "#3E606F", female = "#8C3F4D"),
labels = c("жінки", "чоловіки"))+
theme_minimal(base_family = "Ubuntu Condensed")+
theme(text = element_text(color = "#3A3F4A"),
panel.grid.major.y = element_blank(),
panel.grid.minor = element_blank(),
panel.grid.major.x = element_line(linetype = "dotted", size = 0.3, color = "#3A3F4A"),
axis.title = element_blank(),
plot.title = element_text(face = "bold", size = 36, margin = margin(b = 10), hjust = 0.030),
plot.subtitle = element_text(size = 16, margin = margin(b = 20), hjust = 0.030),
plot.caption = element_text(size = 14, margin = margin(b = 10, t = 50), color = "#5D646F"),
axis.text.x = element_text(size = 12, color = "#5D646F"),
axis.text.y = element_blank(),
strip.text = element_text(color = "#5D646F", size = 18, face = "bold", hjust = 0.030),
plot.background = element_rect(fill = "#EFF2F4"),
plot.margin = unit(c(2, 2, 2, 2), "cm"),
legend.position = "top",
legend.margin = unit(0.1, "lines"),
legend.text = element_text(family = "Ubuntu Condensed", size = 14),
legend.text.align = 0)
dev.off()
以及由此产生的情节:
答案 2 :(得分:11)
略微调整:
library(ggplot2)
library(plyr)
library(gridExtra)
## The Data
df <- data.frame(Type = sample(c('Male', 'Female', 'Female'), 1000, replace=TRUE),
Age = sample(18:60, 1000, replace=TRUE))
AgesFactor <- ordered(cut(df$Age, breaks = c(18,seq(20,60,5)),
include.lowest = TRUE))
df$Age <- AgesFactor
## Plotting
gg <- ggplot(data = df, aes(x=Age))
gg.male <- gg +
geom_bar( data=subset(df,Type == 'Male'),
aes( y = ..count../sum(..count..), fill = Age)) +
scale_y_continuous('', labels = scales::percent) +
theme(legend.position = 'none',
axis.title.y = element_blank(),
plot.title = element_text(size = 11.5),
plot.margin=unit(c(0.1,0.2,0.1,-.1),"cm"),
axis.ticks.y = element_blank(),
axis.text.y = theme_bw()$axis.text.y) +
ggtitle("Male") +
coord_flip()
gg.female <- gg +
geom_bar( data=subset(df,Type == 'Female'),
aes( y = ..count../sum(..count..), fill = Age)) +
scale_y_continuous('', labels = scales::percent,
trans = 'reverse') +
theme(legend.position = 'none',
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
plot.title = element_text(size = 11.5),
plot.margin=unit(c(0.1,0,0.1,0.05),"cm")) +
ggtitle("Female") +
coord_flip() +
ylab("Age")
## Plutting it together
grid.arrange(gg.female,
gg.male,
widths=c(0.4,0.6),
ncol=2
)
我仍然希望更多地使用边距(也许panel.margin
也可以帮助theme
调用。
答案 3 :(得分:1)
我已经使用facet_share()
得到的面板表来获得相当多的镜像轴 - 我认为结果非常适合人口金字塔。您可以查看代码here。
然后,使用library(magrittr)
library(ggpol)
population <- read.csv("https://raw.githubusercontent.com/andriy-gazin/datasets/master/ageSexDistribution.csv", encoding = "UTF-8")
population %<>%
mutate(ageGroup = factor(ageGroup, levels = ageGroup[seq(length(levels(ageGroup)))])) %>%
filter(year == 2015) %>%
mutate(male = male * -1) %>%
gather(gender, count, -year, -ageGroup) %>%
mutate(gender = factor(gender, levels = c("male", "female"))) %>%
filter(ageGroup != "100 і старше")
ggplot(population, aes(x = ageGroup, y = count, fill = gender)) +
geom_bar(stat = "identity") +
facet_share(~gender, dir = "h", scales = "free", reverse_num = TRUE) +
coord_flip() +
theme_minimal()
函数:
{{1}}
答案 4 :(得分:0)
我喜欢@andriy的情节足以制作一个简化的自定义功能:
数据应如下所示,ageGroup
是有序因素。
head(population)
# ageGroup sex number
# 1 0-4 male 1.896459
# 2 5-9 male 1.914255
# 3 10-14 male 1.832594
# 4 15-19 male 1.849453
# 5 20-24 male 1.658733
# 6 25-29 male 1.918060
然后提供数据和休息时间:
pyramid(population,c(0, 0.5, 1, 1.5, 2))
如果需要,可以使用我从this blog获取的函数age_cat
来创建年龄组。见下面的代码。我略微编辑了原始名称和默认参数。
例如:
age_column <- sample(0:110,10000,TRUE)
table(age_cat(age_column))
# 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100+
# 885 836 885 927 942 953 886 882 935 872 997
<强>功能强>
pyramid <- function(data,.breaks){
ggplot(data, aes(x = ageGroup, color = sex))+
geom_linerange(data = data[data$sex=="male",],
aes(ymin = -tail(.breaks,1)/7, ymax = -tail(.breaks,1)/7-number), size = 3.5, alpha = 0.8)+
geom_linerange(data = data[data$sex=="female",],
aes(ymin = tail(.breaks,1)/7, ymax = tail(.breaks,1)/7+number), size = 3.5, alpha = 0.8)+
geom_label(aes(x = ageGroup, y = 0, label = ageGroup),
inherit.aes = F,
size = 3.5, label.padding = unit(0.0, "lines"), label.size = NA,
label.r = unit(0.0, "lines"), fill = "white", alpha = 0.9, color = "#5D646F")+
scale_y_continuous(breaks = c(-rev(.breaks) -tail(.breaks,1)/7, .breaks+tail(.breaks,1)/7),
labels = c(rev(.breaks),.breaks))+
coord_flip()+
scale_color_manual(name = "", values = c(male = "#3E606F", female = "#8C3F4D"))+
theme_minimal()+
theme(text = element_text(color = "#3A3F4A"),
panel.grid.major.y = element_blank(),
panel.grid.minor = element_blank(),
panel.grid.major.x = element_line(linetype = "dotted", size = 0.3, color = "#3A3F4A"),
axis.title = element_blank(),
axis.text.x = element_text(size = 12, color = "#5D646F"),
axis.text.y = element_blank(),
strip.text = element_text(color = "#5D646F", size = 18, face = "bold", hjust = 0.030),
legend.position = "none")
}
age_cat <- function(x, lower = 0, upper = 100, by = 5,
sep = "-", above.char = "+") {
labs <- c(paste(seq(lower, upper - by, by = by),
seq(lower + by - 1, upper - 1, by = by),
sep = sep),
paste(upper, above.char, sep = ""))
cut(floor(x), breaks = c(seq(lower, upper, by = by), Inf),
right = FALSE, labels = labs)
}
数据强>
library(dplyr)
library(ggplot2)
population <- read.csv("https://raw.githubusercontent.com/andriy-gazin/datasets/master/ageSexDistribution.csv")
population <- population %>%
tidyr::gather(sex, number, -year, - ageGroup) %>%
mutate(ageGroup = factor(ageGroup,
ordered = TRUE,
levels = c("0-4", "5-9", "10-14", "15-19", "20-24",
"25-29", "30-34", "35-39", "40-44",
"45-49", "50-54", "55-59", "60-64",
"65-69", "70-74", "75-79", "80-84",
"85-89", "90-94", "95-99", "100+")),
ageGroup = `[<-`(ageGroup,is.na(ageGroup),value="100+"),
number = number/10^6) %>%
dplyr::filter(year == 1990) %>%
select(-year)