我有一个非常大的数据框,大约有1000万行,在我的例子中,它由向量x1和y1表示。
set.seed(100)
x1<-round(runif(10000,min=1,max=5),0) #random values [1;2;3;4;5]
x2<-runif(10000,min=0,max=1) #random num (0,1]
我想借助下表&#39; rvps&#39;来计算新的向量xx
。
rvps<-data.frame(Q_cat=c(1,2,2,2,3,3,3,4,4,5),prov_calc=c(0,1,10,20,21,30,50,51,60,100),
s3_from=c(0.00,0.00,0.90,0.99,0.00,0.60,0.65,0.00,0.99,0.00),
s3_to=c(1.00,0.90,0.99,1.00,0.60,0.65,1.00,0.99,1.00,1.00))
我做了几个解决方案:
#sol№1
library(doParallel)
xx1<-foreach(i=1:length(x1)) %do% {rvps$prov_calc[x1[i]==rvps$Q_cat & x2[i]>rvps$s3_from & x2[i]<=rvps$s3_to]}
#system.time=2.87
太慢了
#sol№2
xx2<-ifelse(x1==1,0,
ifelse(x1==2,
ifelse(x2>0 & x2<=0.9,1,
ifelse(x2>0.9 & x2<=0.99,10,
ifelse(x2>0.99 & x2<=1,20,20))),
ifelse(x1==3,
ifelse(x2>0 & x2<=0.6,21,
ifelse(x2>0.6 & x2<=0.65,30,
ifelse(x2>0.65 & x2<=1,50,50))),
ifelse(x1==4,
ifelse(x2>0 & x2<=0.99,51,
ifelse(x2>0.99 & x2<=1,60,60)),
ifelse(x1==5,100,100)))))
#system.time=0.02
没有我的表(所有边界都是手工输入的)但是很快
#sol№3
rvps.prob<-function(X,Y) {rvps$prov_calc[X==rvps$Q_cat & Y>rvps$s3_from & Y<=rvps$s3_to]}
xx3<-mapply(rvps.prob,x1,x2)
#system.time=0.59
mapply解决方案。比我的第一次尝试更快但不如我需要的那么快。我如何矢量化我的任务? The same question in russian
upd:来自同事的更多解决方案。所有人都失去了矢量函数
#4 вариант #system.time=1.03
system.time(for(i in 1:length(x1))
{
if (rvps$prov_calc[x1[i]==rvps$Q_cat & x2[i]>rvps$s3_from & x2[i]<=rvps$s3_to])
xx4[i] <- rvps$prov_calc[x1[i]==rvps$Q_cat & x2[i]>rvps$s3_from & x2[i]<=rvps$s3_to]
else xx4[i] <- 0
})
#5 вариант #system.time=3.57
system.time({
xx5<-unlist(foreach(i=1:length(x1)) %do% {rvps$prov_calc[x1[i]==rvps$Q_cat & x2[i]>rvps$s3_from & x2[i]<=rvps$s3_to]})
})
#6 вариант #system.time=2.24
system.time(for(i in 1:length(x1))
{
for(j in 1:length(rvps$prov_calc))
if (x1[i]==rvps$Q_cat[j] & x2[i]>rvps$s3_from[j] & x2[i]<=rvps$s3_to[j]) {xx6[i] <- rvps$prov_calc[j];break}
})
答案 0 :(得分:0)
我的工作的精髓如下所示。
初始数据:
mm1<-round(runif(200000,min=1,max=5),0) #random values [1;2;3;4;5]
mm2<-runif(200000,min=0,max=1) #random num (0,1]
使用{dplur}№1进行矢量化:
system.time({
mm3<-if_else(mm1==1,0,
if_else(mm1==2 & mm2>0 & mm2<= 0.9,1,
if_else(mm1==2 & mm2>0.9 & mm2<= 0.99,10,
if_else(mm1==2 & mm2>0.99 & mm2<= 1,20,
if_else(mm1==3 & mm2>0.0 & mm2<= 0.6,21,
if_else(mm1==3 & mm2>0.6 & mm2<= 0.65,30,
if_else(mm1==3 & mm2>0.65 & mm2<= 1,50,
if_else(mm1==4 & mm2>0 & mm2<= 0.99,51,
if_else(mm1==4 & mm2>0.99 & mm2<= 1,60,
if_else(mm1==5,100,100))))))))))
}) #system.time=0.14
使用{dplur}№2进行矢量化:
system.time({
mm3<-case_when(
mm1==1 ~ 0,
mm1==2 & mm2>0 & mm2<= 0.9 ~ 1,
mm1==2 & mm2>0.9 & mm2<= 0.99 ~ 10,
mm1==2 & mm2>0.99 & mm2<= 1 ~ 20,
mm1==3 & mm2>0.0 & mm2<= 0.6 ~ 21,
mm1==3 & mm2>0.6 & mm2<= 0.65 ~ 30,
mm1==3 & mm2>0.65 & mm2<= 1 ~ 50,
mm1==4 & mm2>0 & mm2<= 0.99 ~ 51,
mm1==4 & mm2>0.99 & mm2<= 1 ~ 60,
mm1==5 ~ 100) #system.time=0.14
}) #system.time=0.08