我有两个像这样的数据集
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'id': [1, 2,3,4,5], 'first': [np.nan,np.nan,1,0,np.nan], 'second': [1,np.nan,np.nan,np.nan,0]})
df2 = pd.DataFrame({'id': [1, 2,3,4,5, 6], 'first': [np.nan,1,np.nan,np.nan,0, 1], 'third': [1,0,np.nan,1,1, 0]})
我想要
result = pd.merge(df1, df2, left_index=True, right_index=True,on='id', how= 'outer')
result['first']= result[["first_x", "first_y"]].sum(axis=1)
result.loc[(result['first_x'].isnull()) & (result['first_y'].isnull()), 'first'] = np.nan
result.drop(['first_x','first_y'] , 1)
id second third first
0 1 1.0 1.0 NaN
1 2 NaN 0.0 1.0
2 3 NaN NaN 1.0
3 4 NaN 1.0 0.0
4 5 0.0 1.0 0.0
5 6 NaN 0.0 1.0
问题是真实数据集包含大约200个变量,而且我的方式很长。如何让它更容易?感谢
答案 0 :(得分:3)
您应该可以使用combine_first
:
>>> df1.set_index('id').combine_first(df2.set_index('id'))
first second third
id
1 NaN 1 1
2 1 NaN 0
3 1 NaN NaN
4 0 NaN 1
5 0 0 1
6 1 NaN 0
答案 1 :(得分:0)
应该使用亚历山大提到的combine_first。如果您想将id
保留为列,则只需使用:
merged = df1.merge(df2)