如何在Swift 3中使用带有指数和模数的RSA加密密码?
我有一个Exponent和一个Modulus(字符串中),那么如何使用这些值来加密我的密码呢?
"modulus" : "AI8W0a1hVzDphH0J8Q2tz64Y4UWNNqdUdck3RJrl3V8RYSaxW1lwBos77LNsXU13OcOpgB\/TfeefRBl0J2Dv\/8IwmBZC1M5ZGUfcq0JuogggRWro72WLCuIDPUGH9fO8D\/klAdVDFjVz6LnkWvCoX5WGE1OSygKqAPBO\/BWIRt4l",
"exponent" : "AQAB"
我找到了一些框架,但我没有提供任何pem
文件。
答案 0 :(得分:0)
我找到了解决方案。
openssl
pod 'OpenSSL-Universal'
NSData+TheBase64.h
:
#import <Foundation/Foundation.h>
void *NewBase64Decode(const char *inputBuffer, size_t length, size_t *outputLength);
char *NewBase64Encode(const void *inputBuffer, size_t length, bool separateLines, size_t *outputLength);
@interface NSData (TheBase64)
+ (NSData *)dataFromBase64String:(NSString *)aString;
- (NSString *)base64EncodedString;
@end
NSData+TheBase64.m
:
#import "NSData+TheBase64.h"
//
// Mapping from 6 bit pattern to ASCII character.
//
static unsigned char kBase64EncodeLookup[65] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
//
// Definition for "masked-out" areas of the base64DecodeLookup mapping
//
#define xx 65
//
// Mapping from ASCII character to 6 bit pattern.
//
static unsigned char kBase64DecodeLookup[256] =
{
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, 62, xx, xx, xx, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, xx, xx, xx, xx, xx, xx,
xx, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, xx, xx, xx, xx, xx,
xx, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
};
//
// Fundamental sizes of the binary and base64 encode/decode units in bytes
//
#define BINARY_UNIT_SIZE 3
#define BASE64_UNIT_SIZE 4
//
// NewBase64Decode
//
// Decodes the base64 ASCII string in the inputBuffer to a newly malloced
// output buffer.
//
// inputBuffer - the source ASCII string for the decode
// length - the length of the string or -1 (to specify strlen should be used)
// outputLength - if not-NULL, on output will contain the decoded length
//
// returns the decoded buffer. Must be free'd by caller. Length is given by
// outputLength.
//
void *NewBase64Decode(
const char *inputBuffer,
size_t length,
size_t *outputLength)
{
if (length == -1)
{
length = strlen(inputBuffer);
}
size_t outputBufferSize =
((length+BASE64_UNIT_SIZE-1) / BASE64_UNIT_SIZE) * BINARY_UNIT_SIZE;
unsigned char *outputBuffer = (unsigned char *)malloc(outputBufferSize);
size_t i = 0;
size_t j = 0;
while (i < length)
{
//
// Accumulate 4 valid characters (ignore everything else)
//
unsigned char accumulated[BASE64_UNIT_SIZE];
size_t accumulateIndex = 0;
while (i < length)
{
unsigned char decode = kBase64DecodeLookup[inputBuffer[i++]];
if (decode != xx)
{
accumulated[accumulateIndex] = decode;
accumulateIndex++;
if (accumulateIndex == BASE64_UNIT_SIZE)
{
break;
}
}
}
//
// Store the 6 bits from each of the 4 characters as 3 bytes
//
// (Uses improved bounds checking suggested by Alexandre Colucci)
//
if(accumulateIndex >= 2)
outputBuffer[j] = (accumulated[0] << 2) | (accumulated[1] >> 4);
if(accumulateIndex >= 3)
outputBuffer[j + 1] = (accumulated[1] << 4) | (accumulated[2] >> 2);
if(accumulateIndex >= 4)
outputBuffer[j + 2] = (accumulated[2] << 6) | accumulated[3];
j += accumulateIndex - 1;
}
if (outputLength)
{
*outputLength = j;
}
return outputBuffer;
}
//
// NewBase64Encode
//
// Encodes the arbitrary data in the inputBuffer as base64 into a newly malloced
// output buffer.
//
// inputBuffer - the source data for the encode
// length - the length of the input in bytes
// separateLines - if zero, no CR/LF characters will be added. Otherwise
// a CR/LF pair will be added every 64 encoded chars.
// outputLength - if not-NULL, on output will contain the encoded length
// (not including terminating 0 char)
//
// returns the encoded buffer. Must be free'd by caller. Length is given by
// outputLength.
//
char *NewBase64Encode(
const void *buffer,
size_t length,
bool separateLines,
size_t *outputLength) {
const unsigned char *inputBuffer = (const unsigned char *)buffer;
#define MAX_NUM_PADDING_CHARS 2
#define OUTPUT_LINE_LENGTH 64
#define INPUT_LINE_LENGTH ((OUTPUT_LINE_LENGTH / BASE64_UNIT_SIZE) * BINARY_UNIT_SIZE)
#define CR_LF_SIZE 2
//
// Byte accurate calculation of final buffer size
//
size_t outputBufferSize =
((length / BINARY_UNIT_SIZE)
+ ((length % BINARY_UNIT_SIZE) ? 1 : 0))
* BASE64_UNIT_SIZE;
if (separateLines) {
outputBufferSize +=
(outputBufferSize / OUTPUT_LINE_LENGTH) * CR_LF_SIZE;
}
//
// Include space for a terminating zero
//
outputBufferSize += 1;
//
// Allocate the output buffer
//
char *outputBuffer = (char *)malloc(outputBufferSize);
if (!outputBuffer) {
return NULL;
}
size_t i = 0;
size_t j = 0;
const size_t lineLength = separateLines ? INPUT_LINE_LENGTH : length;
size_t lineEnd = lineLength;
while (true) {
if (lineEnd > length) {
lineEnd = length;
}
for (; i + BINARY_UNIT_SIZE - 1 < lineEnd; i += BINARY_UNIT_SIZE) {
//
// Inner loop: turn 48 bytes into 64 base64 characters
//
outputBuffer[j++] = kBase64EncodeLookup[(inputBuffer[i] & 0xFC) >> 2];
outputBuffer[j++] = kBase64EncodeLookup[((inputBuffer[i] & 0x03) << 4)
| ((inputBuffer[i + 1] & 0xF0) >> 4)];
outputBuffer[j++] = kBase64EncodeLookup[((inputBuffer[i + 1] & 0x0F) << 2)
| ((inputBuffer[i + 2] & 0xC0) >> 6)];
outputBuffer[j++] = kBase64EncodeLookup[inputBuffer[i + 2] & 0x3F];
}
if (lineEnd == length) {
break;
}
//
// Add the newline
//
outputBuffer[j++] = '\r';
outputBuffer[j++] = '\n';
lineEnd += lineLength;
}
if (i + 1 < length) {
//
// Handle the single '=' case
//
outputBuffer[j++] = kBase64EncodeLookup[(inputBuffer[i] & 0xFC) >> 2];
outputBuffer[j++] = kBase64EncodeLookup[((inputBuffer[i] & 0x03) << 4)
| ((inputBuffer[i + 1] & 0xF0) >> 4)];
outputBuffer[j++] = kBase64EncodeLookup[(inputBuffer[i + 1] & 0x0F) << 2];
outputBuffer[j++] = '=';
} else if (i < length) {
//
// Handle the double '=' case
//
outputBuffer[j++] = kBase64EncodeLookup[(inputBuffer[i] & 0xFC) >> 2];
outputBuffer[j++] = kBase64EncodeLookup[(inputBuffer[i] & 0x03) << 4];
outputBuffer[j++] = '=';
outputBuffer[j++] = '=';
}
outputBuffer[j] = 0;
//
// Set the output length and return the buffer
//
if (outputLength) {
*outputLength = j;
}
return outputBuffer;
}
@implementation NSData (TheBase64)
//
// dataFromBase64String:
//
// Creates an NSData object containing the base64 decoded representation of
// the base64 string 'aString'
//
// Parameters:
// aString - the base64 string to decode
//
// returns the autoreleased NSData representation of the base64 string
//
+ (NSData *)dataFromBase64String:(NSString *)aString {
NSData *data = [aString dataUsingEncoding:NSASCIIStringEncoding];
size_t outputLength;
void *outputBuffer = NewBase64Decode([data bytes], [data length], &outputLength);
NSData *result = [NSData dataWithBytes:outputBuffer length:outputLength];
free(outputBuffer);
return result;
}
//
// base64EncodedString
//
// Creates an NSString object that contains the base 64 encoding of the
// receiver's data. Lines are broken at 64 characters long.
//
// returns an autoreleased NSString being the base 64 representation of the
// receiver.
//
- (NSString *)base64EncodedString {
size_t outputLength;
char *outputBuffer =
NewBase64Encode([self bytes], [self length], true, &outputLength);
NSString *result =
[[NSString alloc] initWithBytes:outputBuffer length:outputLength encoding:NSASCIIStringEncoding];
free(outputBuffer);
return result;
}
@end
PublicKeyRSA.h
:
#import <Foundation/Foundation.h>
#import <OpenSSL/rsa.h>
#import "NSData+TheBase64.h"
@interface PublicKeyRSA : NSObject
//+ (RSA * __nullable)rsaFromExponent:(NSString * __nonnull)exponent modulus:(NSString * __nonnull)modulus;
//+ (NSString * __nullable)cleanString:(NSString * __nonnull)input;
+ (NSString * __nullable)encrypt:(NSString * __nonnull)string exponentB64:(NSString * __nonnull)exponentB64 modulusB64:(NSString * __nonnull)modulusB64;
@end
PublicKeyRSA.m
:
#import "PublicKeyRSA.h"
@implementation PublicKeyRSA
+ (RSA *)rsaFromExponent:(NSString *)exponent modulus:(NSString *)modulus {
RSA *rsa_pub = RSA_new();
const char *N = [modulus UTF8String];
const char *E = [exponent UTF8String];
if (!BN_hex2bn(&rsa_pub->n, N))
{
// TODO
}
printf("N: %s\n", N);
printf("n: %s\n", BN_bn2dec(rsa_pub->n));
if (!BN_hex2bn(&rsa_pub->e, E))
{
// TODO
}
printf("E: %s\n", E);
printf("e: %s\n", BN_bn2dec(rsa_pub->e));
return rsa_pub;
}
+ (NSString *)cleanString:(NSString *)input {
NSString *output = input;
output = [output stringByReplacingOccurrencesOfString:@"<" withString:@""];
output = [output stringByReplacingOccurrencesOfString:@">" withString:@""];
output = [output stringByReplacingOccurrencesOfString:@" " withString:@""];
return output;
}
+ (NSString *)encrypt:(NSString *)string exponentB64:(NSString *)exponentB64 modulusB64:(NSString *)modulusB64 {
// 1. decode base64
NSData *exponent = [NSData dataFromBase64String:exponentB64];
NSData *modulus = [NSData dataFromBase64String:modulusB64];
NSString *exponentHex = [self cleanString:[exponent description]];
NSString *modulusHex = [self cleanString:[modulus description]];
// 2. create RSA public key
RSA *rsa_pub = [self rsaFromExponent:exponentHex modulus:modulusHex];
// 3. encode base 64
NSData *data = [string dataUsingEncoding: NSASCIIStringEncoding];
NSString *b64String = [data base64EncodedString];
// 4. encrypt
const unsigned char *from = (const unsigned char *)[b64String cStringUsingEncoding: NSASCIIStringEncoding];
int flen = strlen((const char *)from);
unsigned char *to = (unsigned char *) malloc(RSA_size(rsa_pub));
int padding = RSA_PKCS1_PADDING;
int result = RSA_public_encrypt(flen, from, to, rsa_pub, padding);
if (-1 == result) {
return nil;
}
// NSLog(@"from: %s", from); // echo VEVTVA==
// NSLog(@"to: %s", to); // echo something strange with characters like: ~™Ÿû—...
// 5. encode base 64
NSData *cipherData = [NSData dataWithBytes:(const void *)to length:result];
NSString *cipherDataB64 = [cipherData base64EncodedString];
NSLog(@"user encrypted b64: %@", cipherDataB64); // now echo the expected value
return cipherDataB64;
}
@end
4。创建桥接头文件Bridging-Header
并导入<OpenSSL/rsa.h>
,"PublicKeyRSA.h"
和"NSData+TheBase64.h"
PublicKeyRSA.encrypt(string, exponentB64: exponent, modulusB64: modulus)