我知道我已经问了一个类似的问题,但它是一个新的蜘蛛,我有同样的问题(Crawling data successfully but cannot scraped or write it into csv)...我把我的另一个蜘蛛放在这里,我应该有一个输出的例子和所有我通常需要获取输出文件的信息......有没有人可以帮助我?星期五我必须完成这个蜘蛛......所以,我很着急!!
奇怪的是我的Fnac.csv已创建但总是空的......所以我试图直接在我要抓取的页面示例上运行我的蜘蛛,我拥有所需的所有信息......所以,我不明白......也许问题来自我的Rules
或其他什么?
我的蜘蛛:
# -*- coding: utf-8 -*-
# Every import is done for a specific use
import scrapy # Once you downloaded scrapy, you have to import it in your code to use it.
import re # To use the .re() function, which extracts just a part of the text you crawl. It's using regex (regular expressions)
import numbers # To use mathematics things, in this case : numbers.
from fnac.items import FnacItem # To return the items you want. Each item has a space allocated in the momery, created in the items.py file, which is in the second cdiscount_test directory.
from urllib.request import urlopen # To use urlopen, which allow the spider to find the links in a page that is in the actual page.
from scrapy.spiders import CrawlSpider, Rule # To use rules and LinkExtractor, which allowed the spider to follow every url on the page you crawl.
from scrapy.linkextractors import LinkExtractor # Look above.
from bs4 import BeautifulSoup # To crawl an iframe, which is a page in a page in web prgrammation.
# Your spider
class Fnac(CrawlSpider):
name = 'FnacCom' # Name of your spider. You call it in the anaconda prompt.
allowed_domains = ['fnac.com'] # Web domains allowed by you, your spider cannot enter on a page which is not in that domain.
start_urls = ['https://www.fnac.com/Index-Vendeurs-MarketPlace/A/'] # The first link you crawl.
# To allow your spider to follow the urls that are on the actual page.
rules = (
Rule(LinkExtractor(), callback='parse_start_url'),
)
# Your function that crawl the actual page you're on.
def parse_start_url(self, response):
item = FnacItem() # The spider now knowws that the items you want have to be stored in the item variable.
# First data you want which are on the actual page.
nb_sales = response.xpath('//body//table[@summary="données détaillée du vendeur"]/tbody/tr/td/span/text()').re(r'([\d]*) ventes')
country = response.xpath('//body//table[@summary="données détaillée du vendeur"]/tbody/tr/td/text()').re(r'([A-Z].*)')
# To store the data in their right places.
item['nb_sales'] = ''.join(nb_sales).strip()
item['country'] = ''.join(country).strip()
# Find a specific link on the actual page and launch this function on it. It's the place where you will find your two first data.
test_list = response.xpath('//a/@href')
for test_list in response.xpath('.//div[@class="ProductPriceBox-item detail"]'):
temporary = response.xpath('//div[@class="ProductPriceBox-item detail"]/div/a/@href').extract()
for i in range(len(temporary)):
scrapy.Request(temporary[i], callback=self.parse_start_url, meta={'dont_redirect': True, 'item': item})
# To find the iframe on a page, launch the next function.
yield scrapy.Request(response.url, callback=self.parse_iframe, meta={'dont_redirect': True, 'item': item})
# Your function that crawl the iframe on a page
def parse_iframe(self, response):
f_item1 = response.meta['item'] # Just to use the same item location you used above.
# Find all the iframe on a page.
soup = BeautifulSoup(urlopen(response.url), "lxml")
iframexx = soup.find_all('iframe')
# If there's at least one iframe, launch the next function on it
if (len(iframexx) != 0):
for iframe in iframexx:
yield scrapy.Request(iframe.attrs['src'], callback=self.extract_or_loop, meta={'dont_redirect': True, 'item': f_item1})
# If there's no iframe, launch the next function on the link of the page where you looked after the potential iframe.
else:
yield scrapy.Request(response.url, callback=self.extract_or_loop, meta={'dont_redirect': True, 'item': f_item1})
# Function to find the other data.
def extract_or_loop(self, response):
f_item2 = response.meta['item'] # Just to use the same item location you used above.
# The rest of the data you want.
address = response.xpath('//body//div/p/text()').re(r'.*Adresse \: (.*)\n?.*')
email = response.xpath('//body//div/ul/li[contains(text(),"@")]/text()').extract()
name = response.xpath('//body//div/p[@class="customer-policy-label"]/text()').re(r'Infos sur la boutique \: ([a-zA-Z0-9]*\s*)')
phone = response.xpath('//body//div/p/text()').re(r'.*Tél \: ([\d]*)\n?.*')
siret = response.xpath('//body//div/p/text()').re(r'.*Siret \: ([\d]*)\n?.*')
vat = response.xpath('//body//div/text()').re(r'.*TVA \: (.*)')
# If the name of the seller exist, then return the data.
if (len(name) != 0):
f_item2['name'] = ''.join(name).strip()
f_item2['address'] = ''.join(address).strip()
f_item2['phone'] = ''.join(phone).strip()
f_item2['email'] = ''.join(email).strip()
f_item2['vat'] = ''.join(vat).strip()
f_item2['siret'] = ''.join(siret).strip()
yield f_item2
# If not, there was no data on the page and you have to find all the links on your page and launch the first function on them.
else:
for sel in response.xpath('//html/body'):
list_urls = sel.xpath('//a/@href').extract()
list_iframe = response.xpath('//div[@class="ProductPriceBox-item detail"]/div/a/@href').extract()
if (len(list_iframe) != 0):
for list_iframe in list_urls:
yield scrapy.Request(list_iframe, callback=self.parse_start_url, meta={'dont_redirect': True})
for url in list_urls:
yield scrapy.Request(response.urljoin(url), callback=self.parse_start_url, meta={'dont_redirect': True})
我的设置:
BOT_NAME = 'fnac'
SPIDER_MODULES = ['fnac.spiders']
NEWSPIDER_MODULE = 'fnac.spiders'
DOWNLOAD_DELAY = 2
COOKIES_ENABLED = False
ITEM_PIPELINES = {
'fnac.pipelines.FnacPipeline': 300,
}
我的管道:
# -*- coding: utf-8 -*-
from scrapy import signals
from scrapy.exporters import CsvItemExporter
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
# Define your output file.
class FnacPipeline(CsvItemExporter):
def __init__(self):
self.files = {}
@classmethod
def from_crawler(cls, crawler):
pipeline = cls()
crawler.signals.connect(pipeline.spider_opened, signals.spider_opened)
crawler.signals.connect(pipeline.spider_closed, signals.spider_closed)
return pipeline
def spider_opened(self, spider):
f = open('..\\..\\..\\..\\Fnac.csv', 'w').close()
file = open('..\\..\\..\\..\\Fnac.csv', 'wb')
self.files[spider] = file
self.exporter = CsvItemExporter(file)
self.exporter.start_exporting()
def spider_closed(self, spider):
self.exporter.finish_exporting()
file = self.files.pop(spider)
file.close()
def process_item(self, item, spider):
self.exporter.export_item(item)
return item
我的项目:
# -*- coding: utf-8 -*-
import scrapy
# Define here the models for your scraped items
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html
class FnacItem(scrapy.Item):
# define the fields for your items :
# name = scrapy.Field()
name = scrapy.Field()
nb_sales = scrapy.Field()
country = scrapy.Field()
address = scrapy.Field()
siret = scrapy.Field()
vat = scrapy.Field()
phone = scrapy.Field()
email = scrapy.Field()
我在运行蜘蛛的提示中写的命令是:
scrapy crawl FnacCom
输出的一个例子是:
2017-08-08 10:21:54 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-Panasonic/TV-par-marque/nsh474980/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:21:56 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-Philips/TV-par-marque/nsh474981/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:21:58 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-Sony/TV-par-marque/nsh475001/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:01 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-LG/TV-par-marque/nsh474979/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:03 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-Samsung/TV-par-marque/nsh474984/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:06 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-Television/TV-par-marque/shi474972/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:08 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-Television/TV-par-prix/shi474946/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:11 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-Television/TV-par-taille-d-ecran/shi474945/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:12 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-Television/TV-par-Technologie/shi474944/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:15 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Smart-TV-TV-connectee/TV-par-Technologie/nsh474953/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:18 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-QLED/TV-par-Technologie/nsh474948/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:21 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-4K-UHD/TV-par-Technologie/nsh474947/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:23 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Toutes-les-TV/TV-Television/nsh474940/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:26 [scrapy.extensions.logstats] INFO: Crawled 459 pages (at 24 pages/min), scraped 0 items (at 0 items/min)
2017-08-08 10:22:26 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-Television/shi474914/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:28 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/partner/canalplus#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:34 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Meilleures-ventes-TV/TV-Television/nsh474942/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:37 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Toutes-nos-Offres/Offres-de-remboursement/shi159784/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:38 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Offres-Adherents/Toutes-nos-Offres/nsh81745/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:41 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/labofnac#bl=MMtvh#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:44 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Lecteur-et-Enregistreur-DVD-Blu-Ray/Lecteur-DVD-Blu-Ray/shi475063/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:46 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/TV-OLED/TV-par-Technologie/nsh474949/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:49 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Lecteur-DVD-Portable/Lecteur-et-Enregistreur-DVD-Blu-Ray/nsh475064/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:52 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Home-Cinema/Home-Cinema-par-marque/shi475116/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:52 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Univers-TV/Univers-Ecran-plat/cl179/w-4#bl=MMtvh> (referer: https://www.fnac.com)
2017-08-08 10:22:55 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.fnac.com/Casque-TV-HiFi/Casque-par-usage/nsh450507/w-4#bl=MMtvh> (referer: https://www.fnac.com)
非常感谢你的帮助!!!
答案 0 :(得分:1)
我编写了一个小代码重构器来展示如何在不使用crawlspider和使用常见scrapy习语的情况下明确编写蜘蛛:
class Fnac(Spider):
name = 'fnac.com'
allowed_domains = ['fnac.com']
start_urls = ['https://www.fnac.com/Index-Vendeurs-MarketPlace/0/'] # The first link you crawl.
def parse(self, response):
# parse sellers
sellers = response.xpath("//h1[contains(selftext(),'MarketPlace')]/following-sibling::ul/li/a/@href").extract()
for url in sellers:
yield Request(url, callback=self.parse_seller)
# parse other pages A-Z
pages = response.css('.pagerletter a::attr(href)').extract()
for url in pages:
yield Request(url, callback=self.parse)
def parse_seller(self, response):
nb_sales = response.xpath('//body//table[@summary="données détaillée du vendeur"]/tbody/tr/td/span/text()').re(r'([\d]*) ventes')
country = response.xpath('//body//table[@summary="données détaillée du vendeur"]/tbody/tr/td/text()').re(r'([A-Z].*)')
item = FnacItem()
# To store the data in their right places.
item['nb_sales'] = ''.join(nb_sales).strip()
item['country'] = ''.join(country).strip()
# go to details page now
details_url = response.xpath("//iframe/@src[contains(.,'retour')]").extract_first()
yield Request(details_url, self.parse_seller_details,
meta={'item': item}) # carry over our item to next response
def parse_seller_details(self, response):
item = response.meta['item'] # get item that's got filled in `parse_seller`
address = response.xpath('//body//div/p/text()').re(r'.*Adresse \: (.*)\n?.*')
email = response.xpath('//body//div/ul/li[contains(text(),"@")]/text()').extract()
# parse here
yield item