删除Pandas中列(不是整列)中不需要的内容

时间:2017-08-07 14:57:30

标签: pandas

如果我只想在时间戳列中显示2016-06-29并删除不需要的部分,例如15:46:43.895000

,该怎么办?

enter image description here

3 个答案:

答案 0 :(得分:1)

如果是时间戳:

 df['timestamp'] = df['timestamp'].dt.floor('d')

如果字符串:

 df['timestamp'] = df['timestamp'].str.split().str[0]

样品:

df = pd.DataFrame({'timestamp':pd.date_range('2016-06-29 15:46:43.895000', 
                               periods=3, 
                               freq='2000T')})
print (df)
                timestamp
0 2016-06-29 15:46:43.895
1 2016-07-01 01:06:43.895
2 2016-07-02 10:26:43.895

print (type(df.loc[0, 'timestamp']))
<class 'pandas._libs.tslib.Timestamp'>

df['timestamp'] = df['timestamp'].dt.floor('d')
print (df)
   timestamp
0 2016-06-29
1 2016-07-01
2 2016-07-02
df = pd.DataFrame({'timestamp':['2016-06-20 15:46:43.895000', 
                                '2016-06-22 15:46:43.895000',
                                '2016-06-29 15:46:43.895000']})
print (df)
                    timestamp
0  2016-06-20 15:46:43.895000
1  2016-06-22 15:46:43.895000
2  2016-06-29 15:46:43.895000

print (type(df.loc[0, 'timestamp']))
<class 'str'>

df['timestamp'] = df['timestamp'].str.split().str[0]
print (df)
    timestamp
0  2016-06-20
1  2016-06-22
2  2016-06-29

答案 1 :(得分:1)

我们可以使用.dt.normalize()方法:

df['timestamp'] = df['timestamp'].dt.normalize()

答案 2 :(得分:0)

df['timestamp']=pd.to_datetime(df['timestamp']).dt.strftime('%Y-%m-%d')